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1. Introduction 

Let G be a  connected  graph,  the  vertex  set  

and  edge  set  of G is  denoted by V(G) and 

E(G)  respectively. The distance d(u,v) between 

u and v is the length of the smallest path, where 

u,v∈V(G). The maximum distance between the 

two vertices of a graph G is called the diameter 

of G and is denoted by d(G). The degree of a 

vertex u ∈V(G) is the number of  vertices joined 

to u or  the  number  of  edges  incident  with  u 

and  is  denoted  by d_u. The Hosoya 

polynomial of a graph G is a generating function 

that 

 

 

indicates about the distribution of distance in a 

graph. The polynomial was introduced by a 

Japanese chemist Haruo Hosoya in 1988. Haruo 

Hosoya discovered a new formula for the 

Wiener Index in terms of graph distance and 

therefore this polynomial is known by the name 

of its discoverer. The Hosoya polynomial of a 

connected graph G is defined as (Hosoya, 1988): 

𝐻(𝐺, 𝑥) = ∑ 𝑑𝑘𝑥𝑘

𝑙

𝑘=1

 

where l is the diameter of G and d_k is the 

number of paths of length k between the two 

vertices of G. 
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Abstract 

Let 𝐺 be a simple connected graph having vertex set 𝑉(𝐺) and 

edge set 𝐸(𝐺). The Hosoya polynomial of 𝐺 is 𝐻(𝐺, 𝑥) =

∑ 𝑥𝑑(𝑢,𝑣)
{𝑢,𝑣)⊂𝑉(𝐺) , where 𝑑(𝑢, 𝑣) denotes the distance between 

the vertices 𝑢 and 𝑣. In this research paper, we will compute the 

Hosoya polynomial of the Cartesian product of cycles 𝐶𝑚 × 𝐶𝑛 for 

all even numbers 𝑚 and 𝑛 being odd (∀𝑚 ≥ 𝑛). 
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In 1996, the Wiener polynomial was solitarily 

initiated and examined. In fact, the polynomial 

was originally known as the Wiener polynomial 

but later, under the admiration of the researcher 

the name was changed to Hosoya polynomial. 

The fringe benefit of the Hosoya polynomial is 

that it contains abundance of knowledge about 

graph invariants that are distance based. For 

example, the first derivative of the Hosoya 

polynomial at x=1 is equal to the Wiener Index. 

This property of the Hosoya polynomial makes 

it phenomenal. The Hosoya polynomial gives a 

supplemental knowledge about distances in a 

graph G (Sagan et al., 1996). 

The most interesting application of Hosoya 

polynomials (Amin et al., 2017) is that almost 

all distance-based graph invariants, which are 

used to predict physical, chemical, and 

pharmacological properties of organic molecules 

can be recovered from Hosoya polynomials. In 

fact, it calculates the number of distances of 

paths of different lengths in the graph G (Amin 

et al., 2017). 

The Hosoya polynomial of various chemical 

structures has been determined (Ali & Ali, 2011, 

Farahani, 2013 and Sadeghieh et al., 2017). 

Moreover, the Hosoya polynomial of some 

graph families have been examined (Farahani, 

2015, Narayankar et al., 2012). Also, the 

Hosoya polynomial of families of graphs has 

been studied (Stevanovic, 2001 and Wang et al., 

2016).  

The Wiener Index (Rezai et al., 2017) of a graph 

can be calculated by using the Hosoya 

polynomial. It is formulated as follows: 

𝑊(𝐺) = 𝐻′(𝐺, 𝑥)|𝑥=1 

The hyper Wiener Index (Rezai et al., 2017) of a 

graph can be calculated by using the Hosoya 

polynomial. It is formulated as follows: 

𝑊𝑊(𝐺) = 𝐻′(𝐺, 𝑥)|𝑥=1 +
1

2
𝐻"(𝐺, 𝑥)|𝑥=1 

where the former and later are the first and 

second derivatives of the Hosoya polynomial at 

x=1. 

2. Materials and Methods 

After going through a series of research papers 

that are based on the Hosoya polynomial of 

families of graphs, a simple calculation for 

finding out the Hosoya polynomial, Wiener 

Index and hyper Wiener Index will be put 

forward in order to understand these 

terminologies in a better way.  

Create the first form of the understudy family of 

the graph, and then calculate the distance 

between the vertices of the graph. After 

calculating the distance, separate the vertices 

according to their degrees. Calculate 𝑑(𝐺, 𝑘) 

where 𝑘 denotes the distance parameter. Now, 

after the completion of this process, revise the 

same steps for the second form of the family of 

the graph, then the third, and so on. Once several 

forms of graphs are checked, a formula is 

generated that can satisfy the number of paths 

calculated for each 𝑑(𝐺, 𝑘). Combining the 

terms will give the Hosoya polynomial of the 

family of the graph. 
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3. Results 

In this section, we determine the Hosoya 

polynomial, Wiener Index and hyper Wiener 

Index of the families of the Cartesian product of 

Cycles 𝐶𝑚 × 𝐶𝑛, for 𝑚, 𝑛 being even and odd. 

First consider the definition of the Cartesian 

product of Cycles. 

3.1 Definition: 

The Cartesian product of 𝐶𝑚 × 𝐶𝑛 is a graph 

containing 𝑚𝑛 vertices and 2𝑚𝑛 edges, 

∀𝑚, 𝑛 ≥ 3, where 𝑚 ≥ 𝑛 and both 𝑚 and 𝑛 are 

odd and even. It is a graph that consists of 𝑛 

cycles and each cycle consists of 𝑚 vertices 

joined in such a way that the vertex 𝑢1,1 of the 

inner most cycle is connected to the vertex 𝑢2,1 

of the cycle next to the inner most one and 𝑢𝑛,1 

of the exterior most cycle. The vertex 𝑢2,1 is 

then connected to the vertex 𝑢3,1 lying on the 

third cycle as the index is indicating. Thus, 

continuing in this manner the vertex 𝑢𝑛−1,1 is 

then connected to 𝑢𝑛,1. The graph 𝐶𝑚 ×  𝐶𝑛 

consists of 𝑚 + 𝑛 cycles (Sehar 2014 and 

Govorcin & Skrekovski 2014).  

Theorem 3.1: The Hosoya polynomial of the 

families of the Cartesian product of Cycles 

𝐶𝑚 ×  𝐶𝑛, where 𝑚 ≥ 𝑛, 𝑚 is even and 𝑛 is odd 

is 

𝐻(𝐶𝑚 × 𝐶𝑛, 𝑥) = 𝑑(𝐶𝑚 × 𝐶𝑛, 1)𝑥

+ 𝑑(𝐶𝑚 × 𝐶𝑛, 2)𝑥2

+ ∑ 𝑛2𝑚𝑥𝑟

𝑚−2
2

𝑟=
𝑛+1

2

+ ⋯ + 𝑑(𝐶𝑚

× 𝐶𝑛, 𝑑)𝑥𝑑 

where 
𝑛+1

2
≤ 𝑟 ≤

𝑚−2

2
 and 𝑑 =

𝑚

2
+

𝑛−1

2
 is the 

diameter of 𝐶𝑚 × 𝐶𝑛. 

Proof: 

Let 𝐺 = 𝐶𝑚 × 𝐶𝑛 be a graph ∀𝑚, 𝑛 ≥ 3 with 

𝑚𝑛 vertices and 2𝑚𝑛 edges. There are vertices 

of degree 4 only. So, there is no partitioning of 

the vertices required here. The total number of 

vertices of degree 4 are 𝑚𝑛. The vertex set 

𝑉(𝐶𝑚 × 𝐶𝑛) is as follows: 

𝑉4 = {𝑣 ∈ 𝑉(𝐶𝑚 × 𝐶𝑛)|𝑑𝑣 = 4} → |𝑉4|

= 𝑚𝑛 

(3.1.1) 

Now we know that, 

|𝐸(𝐺)| =
1

2
∑|𝑉𝑘| × 𝑘

Δ

𝑘=𝛿

 
   

(3.1.2) 

where ∆ and 𝛿 are the maximum and minimum 

of 𝑑𝑣 , 𝑣 ∈ 𝑉(𝐺), respectively, thus 

|𝐸(𝐶𝑚 × 𝐶𝑛)| =
1

2
{4 × |𝑉4|} 

   

(3.1.3) 

Making substitutions from (3.1.1) in (3.1.3), 

|𝐸(𝐶𝑚 × 𝐶𝑛)| =
1

2
{4𝑚𝑛} = 2𝑚𝑛 

   

(3.1.4) 

Now to compute the Hosoya polynomial of 

𝐶𝑚 × 𝐶𝑛, we will use the definition of the 

Hosoya polynomial from (Hosoya, 1988). Thus, 

we have 
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𝐻(𝐺, 𝑥) = ∑ 𝑑(𝐺, 𝑘)𝑥𝑘

𝑑(𝐺)

𝑘=1

 
   

(3.1.5) 

where 𝑑(𝐺, 𝑘) is the representation of the 

distance 𝑑(𝑢, 𝑣) = 𝑘 and 1 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺). 

As the diameter of  𝐶𝑚 × 𝐶𝑛 (∀𝑚, 𝑛 ≥ 3, 𝑚 ≥

𝑛, 𝑚 being even and 𝑛 being odd) is (Sehar, 

2014) 

𝑑𝑖𝑎𝑚(𝐶𝑚 × 𝐶𝑛) =
𝑚

2
+

𝑛 − 1

2

=
𝑚 + 𝑛 − 1

2
 

(3.1.6) 

To determine the Hosoya polynomial of 

𝐶𝑚 × 𝐶𝑛, we will consider the different cases. 

The technique is that we keep 𝑛 fixed and will 

vary 𝑚. 

Case I: When 𝑚 ≥ 4 and 𝑛 = 3  

The graph 𝐶𝑚 × 𝐶3 have 3𝑚 vertices and 

6𝑚 edges. Moreover, it is easy to verify that the 

vertices appearing in the respective families of 

graphs are of degree 4 and they are 3𝑚 in 

numbers. Thus, the vertex set is  

𝑉4 = {𝑣 ∈ 𝑉(𝐶𝑚 × 𝐶3)|𝑑𝑣 = 4} → |𝑉4|

= 3𝑚 

(3.1.7) 

and the total number of edges are 

|𝐸(𝐶𝑚 × 𝐶3)| =
1

2
{4 × |𝑉4|} 

|𝐸(𝐶𝑚 × 𝐶3)| =
1

2
{12𝑚} = 6𝑚 (3.1.8) 

 

 

 

Figure 1: 𝐶4 × 𝐶3 

As, the diameter of 𝐶𝑚 × 𝐶𝑛 is 𝑑 =
𝑚

2
+

𝑛−1

2
, so 

for 𝐶𝑚 × 𝐶3 it is 
𝑚+3−1

2
=

𝑚+2

2
. It is clear from 

the definition of the edge set of 𝐶𝑚 × 𝐶3, that 

the number of 1-edge path is 6𝑚. Hence, 

𝑑(𝐶𝑚 × 𝐶3, 1) = |𝐸(𝐶𝑚 × 𝐶3)|

= 6𝑚 

   

(3.1.9) 

𝑑(𝐶𝑚 × 𝐶3, 𝑟) = 9𝑚, 2 ≤ 𝑟 ≤
𝑚 − 2

2
 

 

(3.1.10) 

There are 9𝑚 r-edges paths between 𝑢, 𝑣 ∈ 𝑉4, 

where 2 ≤ 𝑟 ≤
𝑚−2

2
. Hence, we get the second 

term which is of the form [9𝑚]𝑥𝑟. 

𝑑 (𝐶𝑚 × 𝐶3,
𝑚

2
) =

15𝑚

2
 (3.1.11) 

The number of 
𝑚

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 
15𝑚

2
. Thus, the third term 

of the Hosoya polynomial is of the form 

[
15𝑚

2
]𝑥

𝑚

2 .  
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𝑑 (𝐶𝑚 × 𝐶3,
𝑚 + 2

2
) = 3𝑚 (3.1.12) 

The number of 
𝑚+2

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 3𝑚. Thus, the last term of 

the Hosoya polynomial is of the form [3𝑚]𝑥
𝑚+2

2 .  

Now, adding up all the distances, we get the 

following form of the Hosoya polynomial of 

𝐶𝑚 × 𝐶3, 

𝐻(𝐶𝑚 × 𝐶3) = 6𝑚𝑥 + ∑ 9𝑚𝑥𝑟

𝑚−1
2

𝑟=2

+
15𝑚

2
𝑥

𝑚
2

+ 3𝑚𝑥
𝑚+2

2  

This completes the Case I. 

Case II: When 𝑚 ≥ 6 and 𝑛 = 5 

The graph 𝐶𝑚 × 𝐶5 have 5𝑚 vertices and 

10𝑚 edges. Furthermore, one can make a note 

of that the only vertices that appear in the under-

study family is of degree 4. So, the total number 

of vertices of degree 4 are 5𝑚. Hence, the vertex 

set is  

𝑉4 = {𝑣 ∈ 𝑉(𝐶𝑚 × 𝐶5)|𝑑𝑣 = 4}

→ |𝑉4| = 5𝑚 

(3.1.13) 

and the total number of edges are 

|𝐸(𝐶𝑚 × 𝐶5)| =
1

2
{20𝑚} = 10𝑚 (3.1.14) 

The diameter of 𝐶𝑚 × 𝐶5 is 
𝑚+𝑛−1

2
=

𝑚+5−1

2
=

𝑚+4

2
. From the definition and structure of the 

respective family, it is easy to see that the 

number of 1-edge path is equal to the total 

number of edges. Hence, 

𝑑(𝐶𝑚 × 𝐶5, 1) = |𝐸(𝐶𝑚 × 𝐶5)|

= 10𝑚 

(3.1.15) 

𝑑(𝐶𝑚 × 𝐶5, 2) = 20𝑚 (3.1.16) 

The number of 2-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 20m. Thus, the second 

sentence term of the Hosoya polynomial is of 

the form [20𝑚]𝑥2. 

𝑑(𝐶𝑚 × 𝐶5, 𝑟) = 25𝑚, 3 ≤ 𝑟

≤
𝑚 − 2

2
 

(3.1.17) 

The number of r-edges paths between 𝑢, 𝑣 ∈ 𝑉4 

are 25𝑚, where 3 ≤ 𝑟 ≤
𝑚−2

2
. Thus, we get the 

term [25𝑚]𝑥𝑟. 

𝑑 (𝐶𝑚 × 𝐶5,
𝑚

2
) =

45𝑚

2
 (3.1.18) 

The number of 
𝑚

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 
45𝑚

2
. Thus, for the 

corresponding 
𝑚

2
 term of the polynomial we 

have, [
45𝑚

2
]𝑥

𝑚

2 .  

𝑑 (𝐶𝑚 × 𝐶5,
𝑚 + 2

2
) = 15𝑚 (3.1.19) 

The number of 
𝑚+2

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 15𝑚. Thus, the fifth term 

of the polynomial is, [15𝑚]𝑥
𝑚+2

2 .  

𝑑 (𝐶𝑚 × 𝐶5,
𝑚 + 4

2
) = 5𝑚 (3.1.20) 
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The number of 
𝑚+4

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 5𝑚. Thus, the last term of 

the polynomial is, [5𝑚]𝑥
𝑚+4

2 .  

Adding up all the above calculated distances, we 

have the following form of the Hosoya 

polynomial of 𝐶𝑚 × 𝐶5, 

𝐻(𝐶𝑚 × 𝐶5) = 10𝑚𝑥 + 20𝑚𝑥2 + ∑ 25𝑚𝑥𝑟

𝑚−2
2

𝑟=3

+
45𝑚

2
𝑥

𝑚
2 + 15𝑚𝑥

𝑚+2
2

+ 5𝑚𝑥
𝑚+4

2  

This completes the second case. Now, one can 

easily distinguish the difference between the 

Hosoya polynomial of 𝐶𝑚 × 𝐶3 and 𝐶𝑚 × 𝐶5. In 

the later, there is specific number of 2-edges 

paths which were not appearing in the former. 

To be more crystal clear regarding the pattern of 

the 𝑘-edges paths where 1 ≤ 𝑘 ≤
𝑚+𝑛−1

2
. We 

will consider a third case to come to a 

conclusion. 

Case III: When 𝑚 ≥ 8 and 𝑛 = 7 

The graph 𝐶𝑚 × 𝐶7 have 7𝑚 vertices and 

14𝑚 edges. Moreover, it is easy to verify that 

the vertices appearing in the respective family is 

of degree 4. So, the total number of vertices of 

degree 4 are 7𝑚. Hence, the vertex set is  

𝑉4 = {𝑣 ∈ 𝑉(𝐶𝑚 × 𝐶7)|𝑑𝑣 = 4}

→ |𝑉4| = 7𝑚 

(3.1.21) 

and the total number of edges are 

|𝐸(𝐶𝑚 × 𝐶7)| =
1

2
{28𝑚} = 14𝑚 (3.1.22) 

The diameter of 𝐶𝑚 × 𝐶7 is 
𝑚+𝑛−1

2
=

𝑚+7−1

2
=

𝑚+6

2
. It is easy to verify that the number of 1-

edge path is equal to the total number of edges. 

Hence, 

𝑑(𝐶𝑚 × 𝐶7, 1) = |𝐸(𝐶𝑚 × 𝐶7)|

= 14𝑚 

(3.1.23) 

𝑑(𝐶𝑚 × 𝐶7, 2) = 28𝑚 (3.1.24) 

The number of 2-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 28𝑚. Thus, the second 

sentence term of the Hosoya polynomial is of 

the form [28𝑚]𝑥2. 

𝑑(𝐶𝑚 × 𝐶7, 3) = 42𝑚 (3.1.25) 

The number of 3-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 42𝑚. Thus, the third 

sentence term of the Hosoya polynomial is of 

the form [42𝑚]𝑥3. 

𝑑(𝐶𝑚 × 𝐶7, 𝑟) = 49𝑚, 4 ≤ 𝑟

≤
𝑚 − 2

2
 

(3.1.26) 

The number of r-edges paths between 𝑢, 𝑣 ∈ 𝑉4 

are 49𝑚, where 4 ≤ 𝑟 ≤
𝑚−2

2
. Thus, we get the 

term [49𝑚]𝑥𝑟. 

𝑑 (𝐶𝑚 × 𝐶7,
𝑚

2
) =

91𝑚

2
 (3.1.27) 

The number of 
𝑚

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 
91𝑚

2
. Thus, for the 

corresponding 
𝑚

2
 term of the polynomial we 

have, [
91𝑚

2
]𝑥

𝑚

2 .  
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𝑑 (𝐶𝑚 × 𝐶7,
𝑚 + 2

2
) = 35𝑚 (3.1.28) 

The number of 
𝑚+2

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 35𝑚. Thus, the third last 

term of the polynomial is, [35𝑚]𝑥
𝑚+2

2 .  

𝑑 (𝐶𝑚 × 𝐶7,
𝑚 + 4

2
) = 21𝑚 (3.1.29) 

The number of 
𝑚+4

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 21𝑚. Thus, the second last 

term of the polynomial is, [21𝑚]𝑥
𝑚+4

2 .  

𝑑 (𝐶𝑚 × 𝐶7,
𝑚 + 6

2
) = 7𝑚 (3.1.30) 

The number of 
𝑚+6

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 7𝑚. Thus, the last term of 

the polynomial is, [7𝑚]𝑥
𝑚+6

2 .  

Adding up all the above determined distances, 

we have the following form of the Hosoya 

polynomial of 𝐶𝑚 × 𝐶7, 

𝐻(𝐶𝑚 × 𝐶7) = 14𝑚𝑥 + +28𝑚𝑥2 + 42𝑚𝑥3

+ ∑ 49𝑚𝑥𝑟

𝑚−2
2

𝑟=4

+
91𝑚

2
𝑥

𝑚
2

+ 35𝑚𝑥
𝑚+2

2 + 21𝑚𝑥
𝑚+4

2

+ 7𝑚𝑥
𝑚+6

2  

Thus, we acquire the desired result after keeping 

in view the pattern of the distance distribution 

among the vertices of every graph. 

Hence, we get the desired Hosoya polynomial 

for this family of graph i.e. 

𝐻(𝐶𝑚 × 𝐶𝑛, 𝑥) = 𝑑(𝐶𝑚 × 𝐶𝑛, 1)𝑥

+ 𝑑(𝐶𝑚 × 𝐶𝑛, 2)𝑥2

+ ∑ 𝑛2𝑚𝑥𝑟

𝑚−2
2

𝑟=
𝑛+1

2

+ ⋯ + 𝑑(𝐶𝑚

× 𝐶𝑛, 𝑑)𝑥𝑑 

where 
𝑛+1

2
≤ 𝑟 ≤

𝑚−2

2
 and 𝑑 =

𝑚

2
+

𝑛−1

2
is the 

diameter of 𝐶𝑚 × 𝐶𝑛. 

This completes the proof. 

4. Discussion 

In this paper, we have determined the Hosoya 

polynomial of the Cartesian product of cycles 

𝐶𝑚 × 𝐶𝑛 for 𝑚 being even and 𝑛 being odd 

(∀𝑚 ≥ 𝑛). 
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