
Adedire & Ndam., Journal of Natural and Applied Sciences Pakistan, Vol 5 (1), 2023 pp 1242-1258 

 

1242 
 

Contents list available http://www.kinnaird.edu.pk/ 

Journal of Natural and Applied Sciences Pakistan              

 
Journal homepage: http://jnasp.kinnaird.edu.pk/ 

 

A MATHEMATICAL MODEL FOR PREDICTION OF TEMPERATURE AND 

CONCENTRATION PROFILES OF CHEMICAL SPECIES IN NONISOTHERMAL MULTIPLE-

COMPARTMENT SYSTEMS 
 

Oludare Adedire1*, J.N. Ndam2 

1Department of Mathematics, University of Jos, Nigeria  
2 Federal College of Forestry Jos, Plateau State, Nigeria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Article Info 

*Corresponding Author 

Email: dharenss@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords 

Mathematical, Model, temperature, 

concentration, Non-isothermal, Multiple-

Compartment. 

 

Abstract 

A mathematical model for investigating the spatio-temporal 

patterns of temperature and concentration profiles of chemical 

species moving through a no isothermal multiple-compartment 

system is derived.  The no isothermal system which consists of 

adjacent compartments whose partitions allow endothermic 

reaction is considered with the requirement that energy has to be 

supplied at an elevated temperature to trigger reaction rate of the 

reacting chemical species. Particularly, this research used process 

parameters for pyrolysis of propane commonly used in the 

production of ethylene which is an important industrial gas. The 

derived mathematical model – based on distributed parameter 

approach and unidirectional transport of chemical species–

consists of a system of coupled Partial Differential Equations 

(PDEs) which are discretised spatially using the Method of Lines 

(MOL) technique and the resulting semi-discrete system in one 

independent variable t is solved using MATLAB ode15s solver 

which has been known to be well optimised for solutions of such 

problems. The results showed that as the reacting chemical species 

moved spatially through the interconnected no isothermal system, 

there is decrease in temperature profile as a result of significant 

conversion due to chemical process of the species being 

transported thereby causing decrease in temperature at some time 

t.  However, temperature begins to rise due to constant wall 

temperature until a steady state is attained when significant 

conversion of reacting species in chemical reaction has been 

accomplished. Also, a reduction in concentration profile due to 

consumption in reaction of chemical species is observed as the 

spatial distance covered by the chemical species increases. 
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1. Introduction 

Reactions taking place in chemical reactors are 

largely dependent on the temperature and 

concentration profiles of the system. Adequate 

regulation of temperature and moderate addition 

of chemical substance could affect concentration 

of chemical species and contribute to optimum 

yield of products in such reactor system. Some 

past researches have involved chemical kinetics 

and were based on lumped parameter approach 

(Manion & Mcgivern, 2016; Kiss & Osz, 2017; 

Ball 1998). Nelson and Balakrishnan (2008) 

modelled lumped parameter system when 

considering auto ignition of hydrocarbons in a 

batch reactor. The chemical component of their 

model contained four chemical species 

undergoing six reactions. They indicated the 

possibility of having non pphysical solutions 

whenever the steady state temperature is greater 

than certain values. Watson (1908) investigated 

the rate of disinfection with change in 

concentration of disinfectant based on lumped 

parameter system and some of his results are 

based on findings of Chick (1908). The result 

obtained in the case of phenol in his study 

indicated a reaction of seventh order and 

concluded that such results may be said to be 

extraordinary because of rare existence of 

reaction order greater than third order. Readers 

may check the literature (Borisov et al., 2012; 

Audenaert et al., 2010) and references contained 

therein on some kinetic models based on lumped 

parameter systems. Lumped parameter systems 

involving kinetic models are those which usually 

lead to Ordinary Differential Equations (ODEs) 

which could not capture spatiotemporal 

properties of chemical species in chemical 

reactors. In order to solve some of the problems 

associated with limitations of lumped parameter 

systems, alternate approach is to use distributed 

parameter system which often involve Partial 

Differential Equations (PDEs). Adedire and 

Ndam (2019) used distributed parameter system 

to investigate chlorine concentration in a 

multiple-compartment system. Their model was 

based on isothermal system and they concluded 

that the developed mathematical model could 

effectively predict chlorine concentration through 

bulk water and intermediate sections consisting 

of biofilms of P. Aeruginosa with humic acid.  

Sharma et al. (2015) also modelled transport 

phenomena using distributed parameter system. 

They used reduced model for square-shaped 

monolithic channel where elliptic PDEs were 

reduced to a set of parabolic PDEs and an ODE 

in the flow channel with 2-D elliptic PDEs in the 

wash coat layer.  Further details on models based 

on distributed parameter system leading to PDEs 

can be found in the works of Orava et al. (2015) 

and Crapulli et al. (2010). Distributed parameter 

system has the advantage of leading to a system 

of PDEs which could show more detailed 

behaviour of any chemical species moving 

through the reactor. The major challenge is that 

the numerical solution of the system of PDEs is 

far more complex than numerical solutions of 

ODEs obtained from lumped parameter systems. 

However, with the availability of modern 

computers with adequate processing speed, 
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numerical computations of distributed parameter 

systems can be achieved with moderate accuracy 

of solutions. Motivation to proceed with this 

study is hinged on the observation that there has 

not been research findings on modelling 

temperature and concentration profiles for 

chemical species transport through non 

isothermal multiple-compartment systems which 

are connected at boundaries. Previous researches 

on interconnected multiple-compartment reactors 

(Adedire & Ndam, 2019; 2020a; 2020b) were 

based on isothermal systems.  Consideration of 

non-isothermal system will aid the formulation of 

a mathematical model for the transport of 

chemical species whose reaction rate constant is 

not based on assumption of constant temperature 

through interconnected systems. This will also 

enable designers of chemical reactors gain insight 

into behaviour of chemical species whose 

reaction rate is dependent on temperature changes 

in multiple-compartment system. The aim of this 

study is to derive a mathematical model capable 

of predicting temperature and concentration 

profiles for species transport through non 

isothermal multiple- compartment reactor with 

interconnected boundaries. The specific objective 

of the study is to investigate transport of chemical 

species involving endothermic chemical reaction 

– based on process parameters for pyrolysis of 

propane in the production of ethylene through 

interconnected multiple–compartment reactor 

using distributed parameter system. The 

remaining part of this paper is organized as 

follows: section 2 presents model development, 

section 3 deals with numerical simulation, while 

section 4 is on results and discussion and 

conclusion comes up in section 5. 

2. Model Development 

In this section, the governing model equations 

shall be developed based on assumption of 

treating fluid as a continuum (Thompson, 1972). 

Energy balance shall be coupled with mass 

balance to give the set of equations which shall 

be solved simultaneously in order to investigate 

the effects of temperature changes on 

concentration profile of chemical species being 

transported through the non isothermal 

interconnected multiple-compartment system. 

Let 
_

( , ) : nT x t    and 
_

( , ) : nx t  
 

be functions representing the temperature and 

concentration in a medium with boundary   

containing species  
such that

1 2,  , ,  . . . n

nx x x x x  , n are spatial 

coordinates and t is time. Let q  be total 

number of compartments and { , , , , }A B C D E   

be the set representing five compartments 

, , ,A B C D  and
 

E respectively.  With 

unidirectional flow assumption, 1 x x
 
and let 

1x x  represent x-axis, the schematic 

representation and procedure used by Adedire 

and Ndam (2020a) are shown in Figure 1. 
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Figure 1: Species transport in interconnected multiple-compartment system.  

 

 For q = 1; A  ; n = 1;  
 1 ,x x  the energy 

balance and mass balance equations are set up 

with the assumption that heat flux and flow occur 

along the x-axis. The chemical species is assumed 

to diffuse no isothermally such that   undergoes 

irreversible homogeneous pth order reaction 

kinetics for some p .  Let 
hq 

be heat flux 

across the q-compartment system with 

assumption that the reaction rate constant k
and 

the temperature ( , )T x t   
have nonlinear 

relationship and  follow Arrhenius  equation 

(Connors, 1990),
 { , , , , }A B C D E  . Thus, for 

p=1, energy balance over infinitesimal thickness 

in the x direction of th  compartment gives 

( ) ( , ) ( ) ( , ) ( , ) ( , )  

( , )
                                                            

t t t x x x

E

RT

o

h hx x x
f

x T x t x T x t vT x t t vT x t t

Hk e x t
q t q t x t

C



   



 

 


 

 
 
 
 



      

 
      

   (1) 

Divide (1) through by x t  gives 

 

( , ) ( , ) ( , ) ( , )
 

( , )
                                                            

t t t x x x

E

RT

h h ox x x

f

T x t T x t T x t T x t
v

t x

q t q Hk e x t

x C



   



   



 

 
 
 
 



 
 

 

   
 



             

(2) 

Taking the limit of (2) as 0x  , 0t  gives  

( , ) ( , ) ( , )

E

RT

h o

f

T x t T x t q Hk e x t
v

t x x C



    




 
 
 
     

   
  

                                                         
(3) 

     Compart-       Compart-      Compart-     Compart-        Compart- 
      ment  A        ment  B         ment  C         ment  D          ment  E 
 

FLUX 
ACROSS 

FLUX 
ACROSS 

X=XA X=XB X=XC X=XD 

A 

𝜳(𝒙, 𝒕) 

B 

𝜳(𝒙, 𝒕) 

FLUX 
ACROSS 

FLUX 
ACROSS 

𝜳(𝒙, 𝒕) 

C D E 
X=XL X=X𝝁 

∆𝑥 

𝑻(𝒙, 𝒕) 𝑻(𝒙, 𝒕) 𝑻(𝒙, 𝒕) 𝑻(𝒙, 𝒕) 𝑻(𝒙, 𝒕) 
𝜳(𝒙, 𝒕) 𝜳(𝒙, 𝒕) 
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where H  heat of reaction is, 
fC  is fluid specific 

heat, v  is linear fluid velocity, 
ok

is   specific 

rate constant, E is activation energy, R is gas 

constant, and   is fluid density.  

Analogously, mass balance over 

infinitesimal thickness x  in x-direction of th

compartment of the reactor for p=1 with flux 
hq 

 

for concentration ( , )x t  of species   gives 

( ) ( , ) ( ) ( , ) ( , ) ( , )  

                                                            ( , )

t t t x x x

E

RT

h h ox x x

x x t x x t v x t t v x t t

q t q t k e x t x t

   

   

 

 
 
 
 



          

 
         
 
 

       (4) 

Division of (4) by x t  gives 

 

( , ) ( , ) ( , ) ( , )
 

                                                            ( , )

t t t x x x
x

E

h h RTx x x
o

x t x t x t t x t
v

t x

q t q
k e x t

x



   



 

 

 

 
 
 

  

    
 

 

 
  


             

(5) 

Taking the limit of (5) as 0x  , 0t  gives  

( , ) ( , )
( , )

E

RT

o

x t x t q
v k e x t

t x x

  

 

 
 
 
 

  
    

  

                                                                    
(6) 

 

Using Fourier law of heat flux with the assumption that thermal conductivity and axial fluid 

velocity are constant, equation (3) becomes  

( , ) ( , ) ( , ) ( , )
,    , t 0

E

RT

o

L

f f

T x t T x t T x t Hk e x tk
v x x x

t x C x x C



    

 
 

 
 
 
      

       
        

(7) 

 

Using Fick’s law of diffusion (Tyrrell, 1964; Crank, 1979) then equation (6) becomes 

 

( , ) ( , ) ( , )
( , ) , , t 0

E

RT

o L

x t x t x t
v D k e x t x x x

t x x x

  

  

 
 
 
 

   
        

              
(8) 

 

and (8) with assumed constant diffusivity gives 
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2

2

( , ) ( , ) ( , )
( , ) , , t 0

E

RT

o L

x t x t x t
v D k e x t x x x

t x x

  

  

 
 
 
 

   
       

             
(9) 

Observe that equations (7) and (9) are coupled 

system of partial differential equations which will 

be solved simultaneously in each th  compartment 

of the multiple compartment system. Hence, 

equations (7) and (9) for q=5 for 

{ , , , , }A B C D E   depicted in Figure 1 give the 

following system of PDEs which are coupled in 

each compartment. 

( , ) ( , ) ( , ) ( , )
,    , t 0

A

E

RT

A A A Ao A

A L A

f f

T x t T x t T x t Hk e x tk
v x x x

t x C x x C



   

 

 
 
 
      

       
        

(10) 

2

2

( , ) ( , ) ( , )
( , ) , , t 0A

E

RTA A A

Ao A L A

x t x t x t
v D k e x t x x x

t x x

  



 
 
 
 

   
       

        
(11) 

( , ) ( , ) ( , ) ( , )
,    , t 0

B

E

RT

B B B Bo B

B A B

f f

T x t T x t T x t Hk e x tk
v x x x

t x C x x C



   

 

 
 
 
      

       
        

(12) 

2

2

( , ) ( , ) ( , )
( , ) , , t 0B

E

RTB B B

Bo B A B

x t x t x t
v D k e x t x x x

t x x

  



 
 
 
 

   
       

        
(13) 

( , ) ( , ) ( , ) ( , )
,    , t 0

C

E

RT

C C C Co C

C B C

f f

T x t T x t T x t Hk e x tk
v x x x

t x C x x C



   

 

 
 
 
      

       
        

(14) 

2

2

( , ) ( , ) ( , )
( , ) , , t 0C

E

RTC C C

Co C B C

x t x t x t
v D k e x t x x x

t x x

  



 
 
 
 

   
       

        
(15) 

( , ) ( , ) ( , ) ( , )
,    , t 0

D

E

RT

D D D Do D

D C D

f f

T x t T x t T x t Hk e x tk
v x x x

t x C x x C



   

 

 
 
 
      

       
        

(16) 

2

2

( , ) ( , ) ( , )
( , ) , , t 0D

E

RTD D D

Do D C D

x t x t x t
v D k e x t x x x

t x x

  



 
 
 
 

   
       

        
(17) 

( , ) ( , ) ( , ) ( , )
,    , t 0

E

E

RT

E E E Eo E

E D

f f

T x t T x t T x t Hk e x tk
v x x x

t x C x x C



   


 

 
 
 
      

       
        

(18) 
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2

2

( , ) ( , ) ( , )
( , ) , , t 0E

E

RTE E E

Eo E D

x t x t x t
v D k e x t x x x

t x x

  

 

 
 
 
 

   
       

      

Observe that each of equations (10)-(19) is valid 

in specified domains of definition in each 

compartment of the system.  It should be noted 

that since equations (10)-(19) have PDEs with 

first order derivatives in time t and second order 

derivatives in space, each will have one initial 

condition and two boundary conditions in each 

compartment of the system shown in Figure 1. 

For γ=A, equation (10) has initial and 

boundary conditions  

0
( ,0)   T( )A AT x x   

( , ) ( )L A AT x x t T t    

( , ) ( , )A A w A BT x x t hT hT x x t    

and equation (11) has initial and boundary conditions 

0
( ,0)   ( )A Ax x     

( , ) ( )L A Ax x t t      

( , ) ( , )A A A Bx x t k x x t     

For γ=B,C and D , the initial and boundary conditions for (12), (14), and (16) are 

( ,0)   T( )
O

T x x         

 * * * *γ( , ) ( , )f

f

k

CT x x t T x x t

x xk

C

     







   

 
      


  

  
 

   

 

*γ γ
( , ) ( , )wT x x t hT hT x x t        

and equations (13), (15) and (17) have initial and boundary conditions 

( ,0)   ( )
O

x x                 

* * * *γ( , ) ( , )x x t D x x t

x D x

     



      


 
 

*γ γ
( , ) ( , )x x t k x x t         

For γ=E , equation (18) has initial and boundary conditions 
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( ,0)   T( )
OE ET x x         

 ( , ) ( , )fD E D D D

f E

k

CT x x t T x x t

x xk

C

  







 
  

    


  
  
 

    

 

( , ) ( , )E w ET x x t hT hT x x t        

and equations (13), (15) and (17) have initial and boundary conditions 

( ,0)   ( )
OE Ex x                 

( , ) ( , )D E D D D

E

x x t D x x t

x D x

  



   


 
                     

( , ) ( , )
oE Ex x t x x t         

where k in equations (10), (12), (14), (16) and 

(18) represents thermal conductivity, h and Tw in 

equations (22), (28) and (34) represent heat 

transfer coefficient and wall temperature 

respectively. Also 
* 

 represents a compartment 

preceding 
th compartment, 

* 
represents a 

compartment after 
th compartment shown in 

Figure 1.  This means that if B  , then 
* 

means A  and 
* 
means C   for

{ , , , , }A B C D E  . It should be noted that 

Dirichlet boundary conditions (21), (22), (24), 

(25), (28), (31), (34), and (37) indicate assigned 

values at specified boundaries of the system 

shown in Figure 1. Also equations (27), (30), (33) 

and (36) show continuity of heat and mass flux 

from preceding 
* 

compartment to the next 
* 

compartment in a way showing relationship at the 

boundaries of Figure 1. 

2.1 Well-posedness of the governing model 

(10) -(37)  

The solution of the governing model PDEs 

together with their initial and boundary 

conditions (10) -(37) exist and are unique. Hence 

the system of PDEs consists of equations that are 

well-posed. Detailed analysis of well-posedness 

of the governing model PDEs (10)-(37) will not 

be considered here to avoid repetition. Readers 

may consult (Kreiss, & Lorenz, 1989; Strikwerda 

1977) for extensive coverage of existence and 

uniqueness of their solutions. 

2. Numerical Simulation 

The numerical solution of the system of PDEs 

together with their auxiliary conditions (10) -(37) 

are obtained with the use of Method of Lines 

(MOL) technique. This technique involves 

discretisation of spatial derivatives of the 

governing model equations (10)-(37).  In this 

study, finite difference approximations are used. 

Thus,  let i be an index representing 
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positions on grids in x such that ix x  ,  then the 

first order derivative of equations (10)-(37) are 

discretised using first order approximations to 

T

x




and 

x




as 

1( , )
( )i iT TT x t

O x
x x


  

      
       

                 

1( , )
( )i ix t

O x
x x

 
  

 
 

and the second order derivative of the PDEs are discretised using second order approximations to 

2

2

T

x




 

and 

2

2x

 


 as 

                                             

2
21 1

2 2

2( , )
( )i i iT T TT x t

O x
x x

  
  

 
    

                                 

2
21 1

2 2

2( , )
( )i i ix t

O x
x x

     
  

 
   

  

where ( )O x and 
2( )O x are truncation 

errors of approximations from Taylor series. 

Let total number of grids in x be M such that each 

compartment has first boundary (left end) with 

i=1 and last boundary (right-end) with i=M in x. 

Substitution of (38) -(41) into governing model 

equations (10) -(19) gives 

( ) ( ) ( ) 1( ) ( ) ( )i i idT t T t T t
v

dt x

  




 

       

              

( ) 1 ( ) ( ) 1

2

( ) 2 ( ) ( )i i i

f

T t T t T tk

C x

  



   
  

    

        

( )  

( )

( )
,1 , 0;

E

RT

o i

f

Hk e t
i M t

C



 




 
 
 
  

     
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( ) ( ) ( ) 1( ) ( ) ( )i i id t t t
v

dt x

     
 

       

              

( ) 1 ( ) ( ) 1

2

( ) 2 ( ) ( )i i it t t
D

x

       
  

     

        

( )  ( )( ) ,1 , 0;

E

RT

o ik e t i M t

  

 
 
 
       

 

where M  represent number of grid points in x for each 
th compartment of Figure 1. 

Initial and boundary conditions (20), (21) and (22) for A  are semi-discretised as 

                               ( )  ( 0)   T( ( ))A i A oT t x i  
          

                                    

( )  1( )   T( )A AT t t          

( ) ( )( ) M ( )( )  ( )
A AA w MT t hT hT t  

 
and initial and boundary conditions (23), (24) and (25) are semi-discretised as 

( )  ( 0)   ( ( ))A i A ot x i    
     

 ( )  1( )   ( )A At t                        

 
( ) ( )( ) M ( )( )  ( )

A AA Mt k t     

Also initial and boundary conditions (26), (27) and (28) of 
th compartment for { , , }B C D  are 

semi-discretised as 

( )  0( 0)   T( ( ))iT t x i    

* *
* * * * *( ) ( ) ( ) ( ) ( )

( )

( )  M ( ) M 1 [( ] M [( ) ] M 1
( ) ( )( ) ( )

  
f

f

k

C T t T tT t T t

x xk

C

    



     




 
     

 
     


  

  
 

 

*
( ) ( )

( )  M ( )  M
( )  ( )wT t hT hT t

 
     

and initial and boundary conditions (29), (30) and (31) are semi-discretised as 
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( )  0( 0)   ( ( ))it x i      

* *
* * * * *( ) ( ) ( ) ( ) ( )

( )

( ) M ( ) M 1 [( ] M [( ) ] M 1
( ) ( )( ) ( )

  

t tt t D

x D x

    



      
     

  


 
 

*
( ) ( )

( )  M ( )  M
( )  ( )t k t

 
      

For initial and boundary conditions (32), (33) and (34) for E  , the following semi-discretised 

system of equations are obtained 

( )  0( 0)   T( ( ))E i ET t x i    

( ) ( ) ( ) ( ) ( )

(E)

( )  M ( ) M 1 ( ) M ( )  M 1( ) ( ) ( ) ( )
  

D D D D D
fE E D D

f

k

CT t T t T t T t

x xk

C

   




 

 
  

  


  
  
 

 

*
( ) ( )

( )  M ( )  M
( )  ( )wT t hT hT t

 
     

and initial and boundary conditions (35), (36) and (37) for E   gives semi-discretised equations as 

 

( )  0( 0)   ( ( ))E i Et x i      

( ) ( ) ( ) ( ) ( )

( )

( )  M ( ) M 1 ( ) M ( ) ) M 1( ) ( ) ( ) ( )
  

D D D D D

E

E E D Dt t D t t

x D x

       


 
 

( ) ( )( ) M  M( )  ( )
E o EE Et t    

 

The semi-discretised system of equations (42) 

and (43) will be solved in each compartment 

together with their auxiliary conditions (44)-(61) 

for the non isothermal multiple-compartment 

system shown in Figure 1. 

3. Results and Discussion 

The schematic representation of species transport 

through non isothermal multiple-compartment 

system is shown in Figure 1. The total length of 

the entire multiple-compartment system is 600m 

so that each compartment is 120m long. The grid 

points 
( )M 

 , { , , , , }A B C D E  used for the 

numerical simulation of the governing model 

equations in this study are taken to be 21 in each 

compartment of the chemical reactor system. 

Thus, semi-discrete systems of ODEs which 
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resulted from the coupled system of (10) – (37) 

are solved simultaneously for parameters of 

endothermic reaction from the pyrolysis of 

propane selected from literature (Bornakke & 

Sonntag, 1996; Hill, 1977; Knacke et al., 1991; 

Nighswander, 1989; Perry & Chilton, 1973; 

Rastogi et al., 1988) with some values converted 

to S.I units. Fluid specific heat 0.8303fC 

cal/g.K, thermal conductivity 

4 21.787 10 ( . ) / . . ,k cal cm s cm k  heat of 

reaction 21960H   cal/gmol, specific rate 

constant 123.98 10ok   /cal gmol , 

activation energy E = 59100 cal/gmol.K, mass 

diffusivity 3 29 10 /cm sD   , linear fluid 

velocity v=0.01 cm/s, initial temperature 

866.48o KT  , initial concentration of 

species 866.48o KT 

3( ) 40 /ox gmol cm  , wall temperature 

1074.82W KT  , heat transfer coefficient 

20.01 / ( . . )h cal s cm k , fluid density 

4 36.14 10 /g cm   , gas constant 

1.987 / .R cal gmol k ,  and from the entry 

point, a constant boundary value of 

3( ) 40 /ox gmol cm   is used. Results from 

the simulation of the semi-discrete systems 

obtained from (10)-(37) with the aid of Matlab 

ode15s are shown in Figures 2,3,4,5,6  and 7 for 

temperature and concentration profiles of species 

being transported through interconnected  non 

isothermal (q=5) multiple-compartment system 

at times t = 10  seconds, 120 seconds and 12,000 

seconds (3 hours  20 minutes). 

Figure 2: Temperature profile of species in multiple-compartment system at t = 10 seconds 

While Figure 2 shows axial variation of small 

temperature changes at t = 10 seconds, Figure 3 

indicate significant decrease in temperature along 

x-axis. This means that as the reactant chemical 

species spatially moves through the reactor 

system, heat is absorbed due to significant 

conversion of the reactant in the reactor by the 

endothermic reaction causing a temperature 

decrease. 
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Figure 3: Temperature profile of species in multiple-compartment system at t = 120 seconds 

However, temperature begins rise due to the 

effect of wall temperature until it approaches 

steady state as shown in Figure 4 where 

noticeable changes do not appear after significant 

conversion of the reactant has been 

accomplished. 

 

Figure 4: Temperature profile of species in multiple-compartment system at t = 12,000 seconds. 

It can be seen that the temperature T
falls from 

entering value of 866.48 K as the chemical 

species moves through the length of the reactor 

and attains a steady value of 499.09 K at exit. 
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Figure 5: Concentration profile of species in multiple-compartment system at t = 10 seconds. 

The concentration profile of species with initial 

concentration 340 /gmol cm  , being transported 

through the non isothermal system is shown in 

Figure 5 at t = 10 seconds. 

 

Figure 6: Concentration profile of species in multiple-compartment system at t = 120 seconds. 

Figure 6 shows the concentration profile of 

species with diffusivity 
3 29 10 /cm s  at time t 

= 120 seconds and finally Figure 23(7) shows 

concentration profile at t=12,000 seconds (3hours 

20minutes). 
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Figure 7: Concentration profile of species in multiple-compartment system at t = 12,000 seconds. 

It can be seen from Figures 5, 6 and 7 that as time 

t progresses, there is a reduction in concentration 

profile due to consumption of the chemical 

species in the interconnected non isothermal 

multiple-compartment system along x-axis. It can 

also be observed from results indicated in Figure 

7 that the values of concentration at the end of one 

boundary and the beginning of another boundary 

of each interconnected compartment of the 

system are 

3 3 332.00 / ,24.00 / ,16.00 /g cm g cm g cm

and
38.00 /g cm . respectively at t=12,000 

seconds (3 hours 20 minutes). 

4. Conclusion  

In this paper, a mathematical model for transport 

of chemical species through non isothermal 

interconnected multiple-compartment system is 

developed. The focus is to investigate 

temperature and concentration profiles in 

nonisothermal system that consists of adjacent 

compartments which are connected at their 

boundaries. Transport of chemical species 

involving endothermic reaction is considered 

with requirement that thermal energy has to be 

supplied to the interconnected system at an 

elevated temperature. This necessitates that 

transmission of heat would be of a particular 

importance in determining temperature profile. 

Particularly, this study used process parameters 

for pyrolysis of propane in the production of 

ethylene.Results obtained show decrease in 

temperature at some time t along the reactor 

length.  This indicates that as reactant chemical 

species moves spatially through the system, heat 

is absorbed  due to significant conversion in 

chemical reaction of the species being transported 

causing a decrease in temperature. However, after 

some time t, temperature begins rise due to 

constant wall temperature until a steady state is 

attained when significant conversion of reactant 

has been accomplished. Further results from the 
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mass balance equations whose reaction terms are 

coupled to energy balance equations also indicate 

a reduction in concentration profile due to 

consumption of the chemical species as the 

spatial distance it covers increases in the 

multiple-compartment system. Hence, the 

developed model is recommended for use in 

interconnected systems where reaction rate 

constant of kinetic model depends on 

temperatures changes for a chemical species 

undergoing first order reaction kinetic.  
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