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1. Introduction 
Let 𝐺 be a  connected  graph,  the  vertex  set  

and  edge  set  of 𝐺 is  denoted by 𝑉(𝐺) and 

𝐸(𝐺)  respectively. The distance 𝑑(𝑢, 𝑣) 

between u and v is the length of the smallest 

path, where 𝑢, 𝑣 ∈ 𝑉(𝐺). The maximum 

distance between the two vertices of a graph 𝐺 is 

called the diameter of 𝐺 and is denoted by 𝑑(𝐺). 

The degree of a vertex 𝑢 ∈ 𝑉(𝐺) is the number 

of  vertices joined to u or  the  number  of  edges  

incident  with  u and  is  denoted  by 𝑑𝑢. The 

Hosoya polynomial of a graph 𝐺 is a generating 

function that indicates about the distribution of 

distance in a graph. The polynomial was 

introduced by a Japanese chemist Haruo Hosoya 

in 1988. Haruo Hosoya discovered a new 

formula for the Wiener Index in terms of graph 

distance and therefore this polynomial is known 

by the name of its discoverer. The Hosoya 

polynomial of a connected graph 𝐺 is defined as 

(Hosoya, 1988): 

𝐻(𝐺, 𝑥) =
1

2
 ∑ 𝑉(𝐺)

𝑣 ∈ 𝑉(𝐺)

∑ 𝑉(𝐺)

𝑢 ∈ 𝑉(𝐺)

 𝑑(𝑢, 𝑣) 

The Hosoya polynomial of various chemical 

structures has been determined (Ali & Ali, 2011, 

Farahani, 2013 and Sadeghieh et al., 2017). 

Moreover, the Hosoya polynomial of some 
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graph families have been examined (Farahani, 

2015, Farahani, 2015, Narayankar et al., 2012). 

Also, the Hosoya polynomial of families of 

graphs has been studied (Stevanovic, 2001 and 

Wang et al., 2016).  

The Wiener Index (Rezai et al., 2017) of a graph 

can be calculated by using the Hosoya 

polynomial. It is formulated as follows: 

𝑊(𝐺) =
𝜕𝐻(𝐺, 𝑥)

𝜕𝑥
|𝑥=1 

The hyper Wiener Index (Rezai et al., 2017) of a 

graph can be calculated by using the Hosoya 

polynomial. It is formulated as follows: 

𝑊𝑊(𝐺) = 𝐻′(𝐺, 𝑥)|𝑥=1 +
1

2
𝐻"(𝐺, 𝑥)|𝑥=1 

where the former and later are the first and 

second derivatives of the Hosoya polynomial at 

𝑥 = 1. 

1.1 Definition 

The Cartesian product of 𝐶𝑚 × 𝐶𝑛 is a graph 

containing 𝑚𝑛 vertices and 2𝑚𝑛 edges, 

∀𝑚, 𝑛 ≥ 3, where 𝑚 ≥ 𝑛 and both 𝑚 and 𝑛 are 

odd and even. It is a graph that consists of 𝑛 

cycles and each cycle consists of 𝑚 vertices 

joined in such a way that the vertex 𝑢1,1 of the 

inner most cycle is connected to the vertex 𝑢2,1 

of the cycle next to the inner most one and 𝑢𝑛,1 

of the exterior most cycle. The vertex 𝑢2,1 is 

then connected to the vertex 𝑢3,1 lying on the 

third cycle as the index is indicating. Thus, 

continuing in this manner the vertex 𝑢𝑛−1,1 is 

then connected to 𝑢𝑛,1. The graph 𝐶𝑚 ×  𝐶𝑛 

consists of 𝑚 + 𝑛 cycles (Sehar 2014 and 

Govorcin & Skrekovski 2014).  

2. Materials and Methods 

A simple calculation for finding out the Hosoya 

polynomial, Wiener Index and hyper Wiener 

Index will be put forward in order to understand 

these. 

3. Results 

In this section, we determine the Hosoya 

polynomial, Wiener Index and hyper Wiener 

Index of the families of the Cartesian product of 

Cycles 𝐶𝑚 × 𝐶𝑛, for 𝑚, 𝑛 both even. 

Theorem 3.1: The Hosoya polynomial of the 

families of the Cartesian product of Cycles 

𝐶𝑚 ×  𝐶𝑛, where 𝑚 > 𝑛 and both 𝑚 and 𝑛 are 

even is 

𝐻(𝐶𝑚 × 𝐶𝑛, 𝑥) = 𝑑(𝐶𝑚 × 𝐶𝑛, 1)𝑥

+ 𝑑(𝐶𝑚 × 𝐶𝑛, 2)𝑥2

+ ∑ 𝑛2𝑚𝑥𝑟

𝑚−2
2

𝑟=
𝑛+2

2

+ ⋯ + 𝑑(𝐶𝑚

× 𝐶𝑛, 𝑑)𝑥𝑑 

where 
𝑛+2

2
≤ 𝑟 ≤

𝑚−2

2
 and 𝑑 =

𝑚+𝑛

2
 is the 

diameter of 𝐶𝑚 × 𝐶𝑛. 

Proof 

Let 𝐺 = 𝐶𝑚 × 𝐶𝑛 be a graph ∀𝑚, 𝑛 ≥ 4 with 

𝑚𝑛 vertices and 2𝑚𝑛 edges. There are vertices 

of degree 4 only. So, there is no partitioning of 

the vertices required here. The total number of 

vertices of degree 4 are 𝑚𝑛. The vertex set 
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𝑉(𝐶𝑚 × 𝐶𝑛) is as follows: 

𝑉4 = {𝑣 ∈ 𝑉(𝐶𝑚 × 𝐶𝑛)|𝑑𝑣 = 4} → |𝑉4|

= 𝑚𝑛 

(3.1.1) 

Now we know that, 

|𝐸(𝐺)| =
1

2
∑|𝑉𝑘| × 𝑘

Δ

𝑘=𝛿

 
   

(3.1.2) 

where ∆ and 𝛿 are the maximum and minimum 

of 𝑑𝑣 , 𝑣 ∈ 𝑉(𝐺), respectively, thus 

|𝐸(𝐶𝑚 × 𝐶𝑛)| =
1

2
{4 × |𝑉4|} 

   

(3.1.3) 

Making substitutions from (3.1.1) in (3.1.3), 

|𝐸(𝐶𝑚 × 𝐶𝑛)| =
1

2
{4𝑚𝑛} = 2𝑚𝑛 

   

(3.1.4) 

Now to compute the Hosoya polynomial of 

𝐶𝑚 × 𝐶𝑛, we will use the definition of the 

Hosoya polynomial from (Hosoya, 1988). Thus, 

we have 

𝐻(𝐺, 𝑥) = ∑ 𝑑(𝐺, 𝑘)𝑥𝑘

𝑑(𝐺)

𝑘=1

 
   

(3.1.5) 

where 𝑑(𝐺, 𝑘) is the representation of the 

distance 𝑑(𝑢, 𝑣) = 𝑘 and 1 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺). 

As the diameter of  𝐶𝑚 × 𝐶𝑛 (∀𝑚, 𝑛 ≥ 3, 𝑚 ≥ 𝑛 

and both 𝑚, 𝑛 are even) is (Sehar, 2014) 

𝑑𝑖𝑎𝑚(𝐶𝑚 × 𝐶𝑛) =
𝑚 + 𝑛

2
 (3.1.6) 

 

 

 

Figure 1: 𝐶6 × 𝐶4 

To determine the Hosoya polynomial of 

𝐶𝑚 × 𝐶𝑛, we will consider the different cases. 

The strategy is that we keep 𝑛 fixed and will 

vary 𝑚 in order to obtain the Hosoya polynomial 

for the case when 𝑚 > 𝑛. 

Case I: When 𝑚 ≥ 6 and 𝑛 = 4 

The graph 𝐶𝑚 × 𝐶4 have 4𝑚 vertices and 

8𝑚 edges. Moreover, it is easy to verify that the 

vertices appearing in the respective families of 

graphs are of degree 4 and they are 4𝑚 in 

numbers. Thus, the vertex set is  

𝑉4 = {𝑣 ∈ 𝑉(𝐶𝑚 × 𝐶4)|𝑑𝑣 = 4} → |𝑉4|

= 4𝑚 

(3.1.7) 

and the total number of edges are 

|𝐸(𝐶𝑚 × 𝐶4)| =
1

2
{4 × |𝑉4|} 

|𝐸(𝐶𝑚 × 𝐶4)| =
1

2
{16𝑚} = 8𝑚 (3.1.8) 

The diameter of 𝐶𝑚 × 𝐶4 it is 
𝑚+4

2
. It is clear 

from the definition of the edge set of 𝐶𝑚 × 𝐶4, 

that the number of 1-edge path is 8𝑚. Hence, 
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𝑑(𝐶𝑚 × 𝐶4, 1) = |𝐸(𝐶𝑚 × 𝐶4)| = 8𝑚 (3.1.9) 

𝑑(𝐶𝑚 × 𝐶4, 2) = 14𝑚 (3.1.10) 

The number of 2-edges paths between the 

vertices of 𝑢, 𝑣 ∈ 𝑉4 are 14𝑚. Thus, the second 

term of the Hosoya polynomial is of the form 

[14𝑚]𝑥2. 

𝑑(𝐶𝑚 × 𝐶4, 𝑟) = 16𝑚, 3 ≤ 𝑟

≤
𝑚 − 2

2
 

(3.1.11) 

There are 16𝑚 r-edges paths between 𝑢, 𝑣 ∈ 𝑉4, 

where 3 ≤ 𝑟 ≤
𝑚−2

2
. Hence, we get the third 

term which is of the form [16𝑚]𝑥𝑟. 

𝑑 (𝐶𝑚 × 𝐶4,
𝑚

2
) = 14𝑚 (3.1.12) 

The number of 
𝑚

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 14𝑚. Thus, the fourth 

term of the Hosoya polynomial is of the form 

[14𝑚]𝑥
𝑚

2 .  

𝑑 (𝐶𝑚 × 𝐶4,
𝑚 + 2

2
) = 8𝑚 (3.1.13) 

The number of 
𝑚+2

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 8𝑚. Thus, the fifth term of 

the Hosoya polynomial is of the form [8𝑚]𝑥
𝑚+2

2 .  

𝑑 (𝐶𝑚 × 𝐶4,
𝑚 + 4

2
) = 2𝑚 (3.1.14) 

The number of 
𝑚+4

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 2𝑚. Thus, the last term of 

the Hosoya polynomial is of the form [2𝑚]𝑥
𝑚+4

2 .  

Now, adding up all the distances, we get the 

following form of the Hosoya polynomial of 

𝐶𝑚 × 𝐶4, 

𝐻(𝐶𝑚 × 𝐶4, 𝑥) = 8𝑚𝑥 + 14𝑚𝑥2 + ∑ 16𝑚𝑥𝑟

𝑚−2
2

𝑟=3

+ 14𝑚𝑥
𝑚
2 + 8𝑚𝑥

𝑚+2
2

+ 2𝑚𝑥
𝑚+4

2  

This completes the Case I. 

Case II: When 𝑚 ≥ 8 and 𝑛 = 6 

The graph 𝐶𝑚 × 𝐶6 have 6𝑚 vertices and 

12𝑚 edges. Furthermore, one can make a note 

of that the only vertices that appear in the under-

study family is of degree 4. So, the total number 

of vertices of degree 4 are 6𝑚. The total number 

of edges are 

|𝐸(𝐶𝑚 × 𝐶6)| =
1

2
{24𝑚} = 12𝑚 (3.1.15) 

The diameter of 𝐶𝑚 × 𝐶6 is 
𝑚+6

2
. From the 

definition and structure of the respective family, 

it is easy to see that the number of 1-edge path is 

equal to the total number of edges. Hence, 

𝑑(𝐶𝑚 × 𝐶6, 1) = |𝐸(𝐶𝑚 × 𝐶6)|

= 12𝑚 

(3.1.16) 

𝑑(𝐶𝑚 × 𝐶6, 2) = 24𝑚 (3.1.17) 

The number of 2-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 24𝑚. Thus, the second 

term of the Hosoya polynomial is of the form 

[24𝑚]𝑥2. 

𝑑(𝐶𝑚 × 𝐶6, 3) = 33𝑚 (3.1.18) 

The number of 3-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 33𝑚. Thus, the third term 
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of the Hosoya polynomial is of the form 

[33𝑚]𝑥3. 

𝑑(𝐶𝑚 × 𝐶6, 𝑟) = 36𝑚, 4 ≤ 𝑟

≤
𝑚 − 2

2
 

(3.1.19) 

The number of r-edges paths between 𝑢, 𝑣 ∈ 𝑉4 

are 36𝑚, where 4 ≤ 𝑟 ≤
𝑚−2

2
. Thus, we get the 

term [36𝑚]𝑥𝑟. 

𝑑 (𝐶𝑚 × 𝐶6,
𝑚

2
) = 33𝑚 (3.1.20) 

The number of 
𝑚

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 33𝑚. Thus, for the 

corresponding 
𝑚

2
 term of the polynomial we 

have, [33𝑚]𝑥
𝑚

2 .  

𝑑 (𝐶𝑚 × 𝐶6,
𝑚 + 2

2
) = 24𝑚 (3.1.21) 

The number of 
𝑚+2

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 24𝑚. Thus, for this 

corresponding term of the polynomial we have, 

[24𝑚]𝑥
𝑚+2

2 .  

𝑑 (𝐶𝑚 × 𝐶6,
𝑚 + 4

2
) = 12𝑚 (3.1.22) 

The number of 
𝑚+4

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 12𝑚. Thus, for this 

corresponding term of the polynomial we have, 

[12𝑚]𝑥
𝑚+4

2 .  

𝑑 (𝐶𝑚 × 𝐶6,
𝑚 + 6

2
) = 3𝑚 (3.1.23) 

The number of 
𝑚+6

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 3𝑚. Thus, for last term of 

the polynomial we have, [3𝑚]𝑥
𝑚+6

2 .  

Adding up all the above calculated distances, we 

have the following form of the Hosoya 

polynomial of 𝐶𝑚 × 𝐶6, 

𝐻(𝐶𝑚 × 𝐶6, 𝑥) = 12𝑚𝑥 + 24𝑚𝑥2 + 33𝑚𝑥3

+ ∑ 36𝑚𝑥𝑟

𝑚−2
2

𝑟=4

+ 33𝑚𝑥
𝑚
2

+ 24𝑚𝑥
𝑚+2

2 + 12𝑚𝑥
𝑚+4

2

+ 3𝑚𝑥
𝑚+6

2  

This completes the second case. Now, one can 

easily distinguish the difference between the 

Hosoya polynomial of 𝐶𝑚 × 𝐶4 and 𝐶𝑚 × 𝐶6. In 

the later, there is specific number of 2-edges 

paths which were not appearing in the former. 

To be more crystal clear regarding the pattern of 

the 𝑘-edges paths where 1 ≤ 𝑘 ≤
𝑚+𝑛

2
. We will 

consider a third case to come to a conclusion. 

Case III: When 𝑚 ≥ 10 and 𝑛 = 8 

The graph 𝐶𝑚 × 𝐶8 have 8𝑚 vertices and 

16𝑚 edges. Moreover, it is easy to verify that 

the vertices appearing in the respective family is 

of degree 4. So, the total number of vertices of 

degree 4 are 8𝑚. The total number of edges are 

|𝐸(𝐶𝑚 × 𝐶8)| =
1

2
{32𝑚} = 16𝑚 (3.1.25) 

The diameter of 𝐶𝑚 × 𝐶8 is 
𝑚+8

2
. It is easy to 

verify that the number of 1-edge path is equal to 

the total number of edges. Hence, 

𝑑(𝐶𝑚 × 𝐶8, 1) = |𝐸(𝐶𝑚 × 𝐶8)|

= 16𝑚 

(3.1.26) 
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𝑑(𝐶𝑚 × 𝐶8, 2) = 32𝑚 (3.1.27) 

The number of 2-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 32𝑚. Thus, the second 

sentence of the Hosoya polynomial is of the 

form [32𝑚]𝑥2. 

𝑑(𝐶𝑚 × 𝐶8, 3) = 48𝑚 (3.1.28) 

The number of 3-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 48𝑚. Thus, the third term 

of the Hosoya polynomial is of the form 

[48𝑚]𝑥3. 

𝑑(𝐶𝑚 × 𝐶8, 4) = 60𝑚 (3.1.29) 

The number of 4-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 60𝑚. Thus, the fourth 

term of the Hosoya polynomial is of the form 

[60𝑚]𝑥4. 

𝑑(𝐶𝑚 × 𝐶8, 𝑟) = 64𝑚, 5 ≤ 𝑟

≤
𝑚 − 2

2
 

(3.1.30) 

The number of r-edges paths between 𝑢, 𝑣 ∈ 𝑉4 

are 64𝑚, where 5 ≤ 𝑟 ≤
𝑚−2

2
. Thus, we get the 

term [64𝑚]𝑥𝑟. 

𝑑 (𝐶𝑚 × 𝐶8,
𝑚

2
) = 60𝑚 (3.1.31) 

The number of 
𝑚

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 60𝑚. Thus, for the 

corresponding 
𝑚

2
 term of the polynomial we 

have, [60𝑚]𝑥
𝑚

2 .  

𝑑 (𝐶𝑚 × 𝐶8,
𝑚 + 2

2
) = 48𝑚 (3.1.32) 

The number of 
𝑚+2

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 48𝑚. Thus, for the 

corresponding 
𝑚+2

2
 term of the polynomial we 

have, [48𝑚]𝑥
𝑚+2

2 .  

𝑑 (𝐶𝑚 × 𝐶8,
𝑚 + 4

2
) = 32𝑚 (3.1.33) 

The number of 
𝑚+4

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 32𝑚. Thus, for the 

corresponding 
𝑚+4

2
 term of the polynomial we 

have, [32𝑚]𝑥
𝑚+4

2 .  

𝑑 (𝐶𝑚 × 𝐶8,
𝑚 + 6

2
) = 16𝑚 (3.1.34) 

The number of 
𝑚+6

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 16𝑚. Thus, for the 

corresponding 
𝑚+6

2
 term of the polynomial we 

have, [16𝑚]𝑥
𝑚+6

2 .  

𝑑 (𝐶𝑚 × 𝐶8,
𝑚 + 8

2
) = 4𝑚 (3.1.35) 

The number of 
𝑚+8

2
-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 4𝑚. Thus, the last term of 

the polynomial is, [4𝑚]𝑥
𝑚+8

2 .  

Adding up all the above determined distances, 

we have the following form of the Hosoya 

polynomial of 𝐶𝑚 × 𝐶8, 
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𝐻(𝐶𝑚 × 𝐶8, 𝑥) = 16𝑚𝑥 + 32𝑚𝑥2 + 48𝑚𝑥3

+  60𝑚𝑥4 + ∑ 64𝑚𝑥𝑟

𝑚−2
2

𝑟=5

+ 60𝑚𝑥
𝑚
2 + 48𝑚𝑥

𝑚+2
2

+ 32𝑚𝑥
𝑚+4

2 + 16𝑚𝑥
𝑚+6

2

+ 4𝑚𝑥
𝑚+8

2  

Thus, we acquire the desired result after keeping 

in view the pattern of the distance distribution 

among the vertices of every graph. 

This completes the proof. 

Theorem 3.2: The Hosoya polynomial of the 

families of the Cartesian product of Cycles 

𝐶𝑚 ×  𝐶𝑛, where 𝑚 = 𝑛 and both 𝑚 and 𝑛 are 

even is 

𝐻(𝐶𝑚 × 𝐶𝑚, 𝑥) = 𝑑(𝐶𝑚 × 𝐶𝑚, 1)𝑥

+ 𝑑(𝐶𝑚 × 𝐶𝑚, 2)𝑥2

+ ∑ (𝑚3 − 𝑚2)𝑥𝑟

𝑚
2

𝑟=
𝑚
2

+ ⋯

+ 𝑑(𝐶𝑚 × 𝐶𝑚, 𝑑)𝑥𝑑 

Proof 

There are total 𝑚𝑛 vertices and 2𝑚𝑛 edges. To 

compute the Hosoya polynomial for the case 

when 𝑚 = 𝑛, we will use the same methodology 

as used in the above Theorem. We will consider 

three cases and come to the conclusion. The 

diameter (Sehar, 2014) of 𝐶𝑚 × 𝐶𝑛 when both 

𝑚, 𝑛 are even and 𝑚 = 𝑛 is, 

𝑑𝑖𝑎𝑚(𝐶𝑚 × 𝐶𝑚) =
𝑚 + 𝑚

2
= 𝑚 (3.2.1) 

 

 

Figure 2: 𝐶4 × 𝐶4 

By using the definition of the Hosoya 

polynomial from (Hosoya, 1988), we will 

proceed as follows: 

Case I: When 𝑚 = 4 and 𝑛 = 4 

𝑑(𝐶4 × 𝐶4, 1) = 32 (3.2.2) 

𝑑(𝐶4 × 𝐶4, 2) = 48 (3.2.3) 

The number of 2-edges paths between the 

vertices of 𝑢, 𝑣 ∈ 𝑉4 are 48. Thus, the second 

term of the Hosoya polynomial is of the form 

48𝑥2. 

𝑑(𝐶4 × 𝐶4, 3) = 32 (3.2.4) 

There are 32, 3-edges paths between 𝑢, 𝑣 ∈ 𝑉4. 

Hence, we get the third term which is of the 

form 32𝑥3. 

𝑑(𝐶4 × 𝐶4, 4) = 8 (3.2.5) 

The number of 4-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 8. Thus, the last term of 

the Hosoya polynomial is of the form 8𝑥4.  
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Now, adding up all the distances, we get the 

following form of the Hosoya polynomial of 

𝐶𝑚 × 𝐶4, 

𝐻(𝐶4 × 𝐶4, 𝑥) = 32𝑥 + 48𝑥2 + 32𝑥3 + 8𝑥4 

This completes the Case I. 

Case II: When 𝑚 = 6 and 𝑛 = 6  

From the definition and structure of the 

respective family, it is easy to see that the 

number of 1-edge path is equal to the total 

number of edges. Hence, 

𝑑(𝐶6 × 𝐶6, 1) = 72 (3.2.6) 

𝑑(𝐶6 × 𝐶6, 2) = 144 (3.2.7) 

The number of 2-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 144. Thus, the second term 

of the Hosoya polynomial is of the form 144𝑥2. 

𝑑(𝐶6 × 𝐶6, 3) = 180 (3.2.8) 

The number of 3-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 180. Thus, the third term 

of the Hosoya polynomial is of the form 180𝑥3. 

𝑑(𝐶6 × 𝐶6, 4) = 144 (3.2.9) 

The number of 4-edges paths between 𝑢, 𝑣 ∈ 𝑉4 

are 144. Thus, we get the term 144𝑥4. 

𝑑(𝐶6 × 𝐶6, 5) = 72 (3.2.10) 

The number of 5-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 72. Thus, we have, 72𝑥5.  

𝑑(𝐶6 × 𝐶6, 6) = 18 (3.2.11) 

The number of 6-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 18. Thus, for the last term 

of the polynomial we have, 18𝑥6.  

Hence the Hosoya polynomial for 𝐶6 × 𝐶6, 

𝐻(𝐶6 × 𝐶6) = 72𝑥 + 144𝑥2 + 180𝑥3 + 144𝑥4

+ 72𝑥5 + 18𝑥6 

This completes the second case. To come to a 

conclusion regarding this result, we will 

consider a third and last case. 

Case III: When 𝑚 = 8 and 𝑛 = 8 

For the first sentence of the Hosoya polynomial, 

we have 

𝑑(𝐶8 × 𝐶8, 1) = 128 (3.2.12) 

𝑑(𝐶8 × 𝐶8, 2) = 256 (3.2.13) 

The number of 2-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 256. Thus, the second 

sentence of the Hosoya polynomial is of the 

form 256𝑥2. 

𝑑(𝐶8 × 𝐶8, 3) = 384 (3.2.14) 

The number of 3-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 384. Thus, the third term 

of the Hosoya polynomial is of the form 384𝑥3. 

𝑑(𝐶8 × 𝐶8, 4) = 448 (3.2.15) 

The number of 4-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 448. Thus, the fourth term 

of the Hosoya polynomial is of the form 448𝑥4. 

𝑑(𝐶8 × 𝐶8, 5) = 384 (3.2.16) 

The number of 5-edges paths between 𝑢, 𝑣 ∈ 𝑉4 

are 384. Thus, the fifth term is 384𝑥5. 

𝑑(𝐶8 × 𝐶8, 6) = 256 (3.2.17) 

The number of 6-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 256. Thus, for the 
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corresponding sixth term of the polynomial we 

have, 256𝑥6.  

𝑑(𝐶8 × 𝐶8, 7) = 128 (3.2.18) 

The number of 7-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 128. Thus, for the 

corresponding seventh term of the polynomial 

we have, 128𝑥7.  

𝑑(𝐶8 × 𝐶8, 8) = 32 (3.2.19) 

The number of 8-edges paths between the 

vertices 𝑢, 𝑣 ∈ 𝑉4 are 32. Thus, for the last term 

of the polynomial we have, 32𝑥8.  

Adding up all the above determined distances, 

we have the following form of the Hosoya 

polynomial of 𝐶8 × 𝐶8, 

𝐻(𝐶8 × 𝐶8, 𝑥) = 128𝑥 + 256𝑥2 + 384𝑥3

+  448𝑥4 + 384𝑥5 + 256𝑥6

+ 128𝑥7 + 32𝑥8 

Thus, we acquire the desired result after keeping 

in view the pattern of the distance distribution 

among the vertices of every graph. 

This completes the proof. 

4. Discussion 

In this paper, we have determined the Hosoya 

polynomial of the Cartesian product of cycles 

𝐶𝑚 × 𝐶𝑛 for all even numbers and where 𝑚 ≥ 𝑛. 
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