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Abstract

This research endeavors to model and examine the
guantum mechanical behavior of Homo- and Hetero-
Diatomic Systems utilizing the Linear Combination of
Atomic Orbitals (LCAO) approach, directing attention
to wave function localization and energy distribution.
Simulations were carried out on two-dimensional
atomic clusters by means of the LCAO Workbench,
assessing bonding and antibonding states for both
symmetric (Homo-Diatomic) and asymmetric (Hetero-
Diatomic) Molecules. The systems were distinguished
by altering atomic radii and potential depths. The
Homo-Diatomic Molecules displayed symmetric
bonding and antibonding states by reason of identical
atomic properties, yielding closely spaced energy levels.
By comparison, the Hetero-Diatomic Molecule
demonstrated pronounced asymmetry, with the atom of
high radius dominating wavefunction localization.
Bonding states indicated notable wavefunction overlap
and lower energy, whereas antibonding states revealed
minimal overlap and higher energy. These findings
highlight the impact of atomic asymmetry on molecular
stability and electronic structure. The investigation
showcases the versatility of the LCAO approach in
modeling complex atomic interactions, delivering a
sturdy framework for future nanoscale quantum
examinations.
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1. Introduction

One of the remarkable concept that one may
encounter while studding the material and solid state
physics is when two or more atoms are combined
together. In the event that many atoms are brought
close, their associated wavefunctions start of overlap
notably, the energies, and all the qualitative traits of
the  overlapped  wavefunctions,  experience
alterations. The Linear Combination of Atomic
Orbitals (LCAQO) approach continues to be an
essential tool in solid-state physics and gquantum
chemistry, underpinning in the realm of atomic and
molecular electronic  structure  computations.
Through the depiction of electron wavefunction as
an aggregate of -atomic orbital contributions
centered on each atom enclosed within a system,
LCAO clarifies the complex challenge in the
assessment of the electronic structure of solids
(Evarestov, 2012). In the domain of solid-state
physics, the LCAO method demonstrates significant
worth for investigating the electronic properties of
materials. It provides researchers equipped to
interpret and predict atomic interactions within a
solid, which are essential to the exhibition of
physical characteristics for instance; magnetism,
conductivity, and optical properties (Cardona,
2007). The base line principle of LCAO argues that
the electron wavefunction in a solid is an aggregate
of wavefunctions of isolated atoms, taking into
consideration their interdependent relationships. The
multifaceted nature of the LCAO approach is
applicable in numerous systems, such as periodic
solid crystals, where it exploits the periodic potential
to break down systematically the electronic structure

covering a wide array of materials extending from

pure metals to semiconductors and insulators (Slater,
1954). The central purpose of this research is to
conduct simulations of two-dimensional atomic
clusters utilizing LCAO approach executed via a
Pascal-based programming environment. This
simulation project incorporates within Consortium
for Upper-Level Physics Software (CUPS). The
LCAO Workbench is an elegant computational
framework created to assist a dynamic analysis of
the LCAO approach under the scope of solid-state
physics. This software supplies a straightforward
interface via which users can alter and visualize the
properties of simple 2D atoms, each depicting a state
of single electron. By modifying the basic
parameters of these entities, such as coordinates in
x-y plane, diameter, and quantum numbers, users
can examine the emergent quantum mechanical
behavior of the studied system. The LCAO
Workbench thus operates as vital academic and
research tool, providing a hands-on approach for
insight the core concepts controlling electron
behavior in solid clusters, and its consequences for
electronic properties and material science (Silsbee,
1997).

1.1 Two Dimensional Atomic Clusters

A hydrogen-like atoms are quite simple. They are
characterized by their piecewise constant potential
that affords them a remarkably straightforward
wavefunction. The bound state for every atom,
there are Bessel functions of the first type in the
interior of the atom (r <R), and another

customized Bessel functions of the second kind, in
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the exterior (r > R)* (Wang, 2024). The boundary
conditions that influence the atomic wavefunctions,
are that the wvalue and derivative of the
properly
(normalization of the wavefunction). The well-

wavefunction must be rescaled

known time-independent Schrddinger is

—h?

o VA, 0) + V(r, 0)9(r, 0) = Ey(r, 6) ()
In this study we are concerned with the ground state
of atoms with single electron and cylindrically
symmetric potential (V (r, ) is actually a function of
r only). This condition reduces the Schrodinger

equation in cylindrical coordinate system to

—-h%10 ( aY(r)
2m ror " or

In fact, Equation (2) is an eigenvalue equation with

) +V(@EY(@) = EY(r) .2

the eigenvalues considering the energies of the
quantum states, and the associated eigenfuntions
considering the atomic wavefunctions that we are
interested in. In this context, the eigenvalue problem
can be expressed as

Huto ) = Egro (3)
where the left hand side of the above expression is

obviously (Hg:,. 1) the atomic Hamiltonian. In this
problem, the piecewise constant V(r) or the
potential constant takes different values at different
situations in space. Specifically, conceptualizing the
atom as a cylindrical model (square well potential
problem) with its radius and depth being changing
will make the solution of Equation (2) pretty simple.

Actually, they are the Bessel function Jg.sce;(0, x)

and the modified function Kpgeese;(0,x)2. For the

purpose of achieving the complete wavefunction for

1 In this context r is the distance measured from the center of
the nucleus and R being the diameter of the atom.

2 Jpesser (0, x) is characterized by Bessel differential equation
of order zero and is exhibits regularity at the origin. On the

a specific atom, two boundary conditions are
required to be met, and the wavefunction necessary
to be adequately normalized. Conventional
boundary conditions are employed: y(r) has to be
continuous at the discontinuity in the potential,
0y (r)/0r needs to maintain continuity at the point
of discontinuity.

1.2 Interaction of Atomic Wavefunctions

Upon atom assembly to form an atomic cluster, their
associated wavefunctions are no longer in isolation.
Alternatively, they interact and influence the
surrounding atoms and  their  associated
wavefunctions as well. This communication
between atoms is commonly known as ‘cluster
states’ that represents the new formed ground states
of the integrated system. Surprisingly, the new
cluster states are significantly different from the
isolated states. The interplay between atomic
wavefunctions is vital in evaluating the electronic
structure of the formed cluster. The wavefunctions
overlap, giving rise to two crucial states; bonding
and antibonding states that govern the stability and
properties of the solid state matter. This occurrence
carries special importance in nanoscale systems, at
points where quantum influences are notable, and
the electronic properties are substantially influenced
by these wavefunction interactions (Pal, 2021) and
(Kanada-En'yo, 2021).

1.3 LCAO Theory

As mentioned above, in the event that atoms come

together, their wavefunctions reflect the effect of the

other hand, Kgesse; (0, x) exhibits global regularity With the
exception of a simple pole at the origin.
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interaction in the formed system. There will be
cluster states that are consistent with eigenstates of
the integrated atomic potentials. In particular,
solving for the exact eigenstates of this system
demands considerable computational power. Since
we are endeavoring for a “real time” system that
allows the researcher to facilitate interactive
modifications to the shape and position of atoms in
the cluster, an exact solution lies beyond the
computational power of standard desktop machines.
On the other hand, there is a prominent
approximation that leads to qualitatively correct and
reasonably close quantitative outcomes. This
approach is LCAO. The principle is that the
interaction potential between atomic neighbors
operates as disturbance, efficiently combining the
atomic states into an overall molecular or cluster
state. Consequently, one may use the atomic stats as
a proficient collection of primitive states for
establishing the combined states of the cluster of
atoms (Cramer, 2013). In this simulation, we will
deal only with atomic ground states for the sake of
simplicity, let the ground state of the ith atom be ;.
The new configuration cluster state can be expressed

as

W=§:Cilﬁi ...(4)
=1

in the cluster state W, the c¢;’s are the probability
amplitudes for each individual atomic state. The c;’s
values can merely evaluated with the aid of the
associated eigenvalue problem:

HrorW = EW ...(5)
Hamiltonian

the total (Hpotq;) takes into

consideration the interatomic and atomic

interactions  such  that,  Hrorar = Hatomic +

Hinteratomic- The atomic part of the Hamiltonian
takes into account each individual term in the cluster
wavefunction. Utilizing Equation (5) we can easily
end up with the atomic energies. Writing each
atomic state as |i >, then the eigenvalue equation
(Equation (5)) becomes

(HAtomic + Vlnteruction)

N N
) ] ...(6)
= Zuih >= EZuih >
i=1 i=1

Projecting out using < j| produce
N

Eju; + Z Ui < j| Vinteractionll >= Euj (1)
i=1

2. Methodology

In this study we are interested in utilizing the LCAO
Workbench computational tool to interactively alter
the atomic parameters in order to visualize the
resulting atomic cluster and the produced molecular
orbitals. The implemented software allows the user to
treat the atoms as 2D cylindrical square-well
problem, evaluates the cluster states wavefunction,
and calculate the elements of the corresponding
Hamiltonian matrix of a number of configurations.
This section breaks down the calculation concepts
and the computation procedure followed. The
examined atoms in LCAO Workbench are treated as
cylindrical square wells characterized by a particular
radius, depth and position. Any atom is defined as

atomObj; = Initialize(r;,V,;, x;, yi) ...(8)

each atom within the cluster will initialize by calling
the Initialize function which give a definite radius
(r;), depth (V,;), and position (x;,y;). The radii
influence the manner in which the wave functions
are determined, as they considered the extent over
which the electron’s probability density exists. On

the other hand, the potential well depth values
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control the orbital energy levels of the electron. In
general, the potential energy of any atom

(atomObj;) is defined as

-V, if n< R}

V(ri)z{ 0 if rn>R

(9
for R being the general or reference radius. Finally,
the positions of the atoms are crucial in evaluating
each element in the Hamiltonian matrix as well as
visualizing the atoms. For an electron confined in the
potential well, the wavefunction () is simply the
solution of Equation (2). Bessel function of the first
kind represent the wavefunction inside the potential
well. In contrast, the wavefuction outside the
potential well is defined by Bessel function of the
second kind. Generally, in the event that r; < R, the
wave function is represented by:

Yin(r) = Al (ar) -.-(10)
where the relationship between the momentum

guantum number m, the wave number, and the

@ = /W (1)

Outside the well where the condition r; > R is

energy E is

satisfied, the wavefunction v, (r) is related to the
modified Bessel function of the second kind K,

Your (1) = BKny (BT) ...(12)
the constant S pertinent to the energy as

dJm(ar)
dr

a —-B

r=R

The permissible energy levels are determined by

solving the above equation for E. To refine the

E =
depth

]m ((ZT‘) - m(ﬁr)
dKm(Br)

1 ( h2k?

Zme(_%)
B = ,T ...(13)

Employing the boundary condition (r = R), the two
unknown coefficients A4 and B can be readily

ascertained using

Ay (1) _ dl/)out(r)l
e E e (14)
fooZTIll/)(r)lzrdr =1 ...(15)
0
[ (R
f 2 A | (ar)|?rdr, 1 <R
0 ...(16)

lf 2nB2|K,,, (BT)|?rdr, r=>R
R

the above normalization condition must be strictly
satisfied, the utilizing code has a normalizing
procedure named ‘Normalize’ which altering the
coefficients A4 and B appropriately. By solving
Equation (2), the energy eigenvalues can be
ascertained. In fact, the eigenvalues are derived by
identifying the roots of Equation (12) that derived
from the boundary condition (r =R) . This is
accomplished computationally in the ‘FindEnergy*
procedure using an algorithm for root-finding
technique. In order to guarantee a non-trivial
solution of the wavefunction, the determinant of the
coefficients <4 and B must set to be zero. As a
consequence, the eigenvalue equation can be solved

to end up with the required energy value.

=0 ...(17)

r=R

energy eigenvalues iteratively, we implement the

following equation

...(18)
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It is vital to mention here that the two Bessel
functions are crucial and extensively used in

evaluating the radial part of the Schrodinger

equation. For the sake of efficient and precise
calculation the following recursion equations are

utilized:

2
Jm+1(r) = Tm]m(r) = Jm-1(r)

...(19)

Kinsn () = (1) + Ko s (1)

The code incorporates procedures for estimating
these functions, taking into account both direct
calculation and interpolation from precomputed

values.

*© d
(ilvlnteractionlj> = J; Ipi(r)v(r)lpj(r)z_ni,

In the used code, the value of this integral is

estimated by Simpson's rule for numerical
integration (Cune, 2007).

3. Construction of Hamiltonian Matrix

An atomic cluster of N atomic quantum states, the
Hamiltonian matrix (H;;) is commonly a matrix of
order N X N, depicts the atomic interaction
(between i-th and j-th atomic quantum states) within

a system of atoms. Within the H;; matrix, two main

Hij = (ilvlnte‘raction |])

Hy = j Y1) Vingeraction () (P)A @)

in this context r refers to the spatial coordinates. In
the implemented code this calculation is curried out
‘MatrixElement’

within  the procedure. This

procedure calculates the above mentioned matrix

elements by considering the central distance
H11 H12

e H:21 H:22

HN1 HNZ

If an atomic cluster is formed and y; () and
Y;(r) are the wavefunctions of the two atoms, and
V(r) is the interaction potential then, the matrix

element in the form of integration is given by

...(20)

types of elements are distinguishable; on the absence
of interaction between atoms of the system at hands,
the diagonal elements describes the on-site-energies

(Hj;), while the rest correspond to the interaction

energies (Hl-j|i¢j). The diagonal on-site-energies are

merely the isolated atom’s energy (H;; = E;l;s,) and
the interaction energies are estimated according to

the following

.21
...(22)

between any pair of atoms with respect to the
associated wavefunctions and the potential depth.
Typically, for instance, a cluster composed of N

atoms the constructed Hamiltonian matrix will be

HlN
H?N ...(23)

HNN
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In order to evaluate the values of the energy levels,
the Hamiltonian matrix should be diagonalized.
Specifically, the used code executes the
diagonalization process via two base steps; first with
the aid of Householder transformation the
Hamiltonian matrix reduced to a tridiagonal form,
subsequently applying the QL algorithm? to estimate
the eigenvectors and the corresponding eigenvalues
(Noble, 2017). A defined variable within the
implemented code named ‘whichState’ allows the
user to select one of the calculated eigenstates for
focusing purposes, further investigation and
subsequent calculation. For the purpose of cluster’s
wavefunction formulation the used code sums all the
contributions from the combined atoms in the
selected eigenstate.

4. Results and Discussion

4.1 Quantum Visualization of a Homo-Diatomic
Molecule

To examine a system composed of two identical
atoms, we defined the radius and the distance
between the atoms prior to running the code. The
used code allows the user to investigate a range of
atomic radii varying from 0.5 to 10 measured in
arbitrary units; on the other hand, the well depth
domain is ranges from 0.1 to 10. The two atoms are
laying on the x-axis and the (x;, y;) are defined, the
radius of each atom and the well depth are 2 and 1
respectively. Figure (1) depicts the atomic cluster,
the energy levels for the cluster-stat wavefunction at
the energy of interest (—0.14), the specific cluster-

state wavefunction, and the wavefunction of the

3 The QL algorithm is a numerical procedure implemented to
evaluate the eigenvalues and eigenvectors of a symmetric

selected atom (placed at the origin). Figure (1-a)
shows a simple system of two identical atoms
positioned along the horizontal axis with a relatively
notable distance between them. Energy Levels of the
Cluster-State wavefunction is illustrated in Figure
(1-b); this plot exhibits the energy levels
corresponding to the ‘bonding’ and ‘antibonding’
states of the homo-diatomic molecule system as a
function of interatomic distance. Owing to the
remarkable distance between atoms, a narrow gap
between energy levels has been noted (demonstrates
poor bounding interaction). The particular cluster-
state wavefunction exhibits the spatial distribution of
electron probability density arising from the
interaction of atomic wavefunctions (Figure (1-c)).
The equilibrated form of the wavefunction,
emphasized by contour lines, indicates constructive
interference, creating a delocalized bonding state.
The electron cloud's utmost probability density (@ =
0.1) is confined to the bonding region, highlighting
the critical overlap of wavefunctions. this behavior
exemplifies the core mechanism by which atomic
wavefunctions merge to create molecular orbitals,
immediately affecting electronic transport properties
in  materials. The visualization reveals key
perspectives on bonding phenomena in atomic
clusters, harmonizing with established theoretical
schemas in quantum mechanics and material science
(Cramer, 2013). The graphical representation of the
wavefunction for the atom at the reference point, as
shown in Figure (1-d), reveals perspectives on the

particularized character of the electron in the

tridiagonal matrices. It proficiently iterates by means of
orthogonal transformations, strongly associated with the QL
algorithm, to simplify the matrix into diagonal form.
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potential well. The wavefunction displays peak
magnitude of approximately @(0) = 0.1 at the
origin and declines following an exponential
function with increasing radial distance. This
behavior is in line with the solution of the
Schrédinger equation (Equation 2), where the radial
part of the wavefunction within the well is depicted
by the Bessel function of the first kind, and outside
the well with the revised Bessel function of the
second kind. Beyond the atomic border, the quick

attenuation of the wavefunction highlights the

restriction of the electron inside the well-defined
potential. The exponential decline revealed in the
diagram indicates the distinguishing behavior of
bound states, with the confinement principally
determined by the potential well depth and radius.
This the
theoretical predictions of cylindrical square-well
and highlights the of

wavefunction localization in defining atomic and

graphical  representation  supports

character

potentials

electronic properties within clusters.
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Figure 1-a: An atomic cluster consisting of two identical atoms that are relatively far apart from each other.
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Figure 2-b: The energy levels for the cluster-state wavefunction at the energy of interest.
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Figure 3-c: The specific cluster-state wavefunction.
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Figure 4-d: The wavefunction of the selected atom (the atom at the origin).

Figure 5: Quantum mechanical visualization of an atomic-cluster consisting of two identical atoms: energy level

distributions, probability densities, and wave function aspects.

4.2 Quantum Visualization of a Hetero-
Diatomic Molecule

Broadening the analysis from the Homo-Diatomic
Molecule, this research also explores a Hetero-
Diatomic Molecule with two atoms differing in
dimensions and potential. The smaller atom at the
reference point (radius = 2, well depth = 1) and a
larger adjacent atom (radius = 4, well depth = 1)
present asymmetry that meaningfully impacts
bonding and antibonding states (as depicted in

Figure 2). For the upper energy state (E = —0.24),

presented in Figure (2-b), destructive interference
gives rise to an antibonding configuration with
diminished wavefunction overlap. This vyields
substantial electron delocalization headed for the
larger-sized atom. Whereas, the lower energy state
(E = —0.77), illustrated in Figure (2-d), reveals a
bonding configuration characterized by symmetric
electron density between the atoms (Figure 2-c). In
comparison to the symmetric Homo-Diatomic
Molecule, the Hetero-Diatomic System indicates
differences in

substantial bonding behavior,

underscoring the role of atomic scale and potential
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on molecular stability. These results correspond with
previous studies on the influence of asymmetry in
molding electronic and bonding characteristics (Zhu,
2011). It is remarkable to mention that at the selected
energy (E = —0.24), the contour plot illustrations
the electron probability density with colored rings
demonstrating regions of constant |¢|? values. The
central rings are concerted around the atom of small
radius, signifying robust electron localization due to
its smaller radius and enhanced confinement (Figure
2-a). The outer rings expand in the direction of the
larger atom, reflecting partial wavefunction
delocalization affected by the larger atom’s weaker
potential. The transition in color from warm to cool
signifies the exponential decay of the wavefunction

with distance. This asymmetry emphasizes the

16 |

1=
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O .(,;1./4—) ~©
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1 L 1 | I—
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Figure 2-a: An atomic cluster consisting of two

interdependence between atomic size and potential
in shaping the electron's spatial configuration. On
the other hand, contour plot aligns with the stable
bonding state, as demonstrated in the energy
diagram is shown in Figures 2-c and d. The electron
probability density is wholly localized around the
atom of large radius, with inner contours
demonstrating high-concentration confinement and
outer contours manifesting elongation towards
lower-density regions. This denotes considerable
wavefunction overlap and constructive interference,
characteristic of a bonding molecular orbital. The
smaller atom's influence is negligible, stress the
dominant role of the larger atom in determining the

wavefunction.

/
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Distinct atoms that are relatively close to each Figure 2-b: Energy levels for the upper energy state

other with atom at the origin being smaller than
the adjacent atom.

(E = —0.42).
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Figure 2-c: The specific cluster-state
wavefunction of the selected energy line.
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Figure 2-d: Energy levels for the upper energy state

(E ~ —0.77).

Figure: 2 Quantum mechanical visualization of a hetero-diatomic molecule

5. Conclusion

This research employed the Linear Combination of
Atomic Orbitals (LCAO) method to simulate and
examine the quantum mechanical behavior of
Homo- and Hetero-Diatomic Molecules. The
assessment of Homo-Diatomic Systems elucidated
symmetric bonding and antibonding states as a result
of equal atomic radii and potentials, causing closely
spaced energy levels and balanced wavefunction
distributions. conversely, the Hetero-Diatomic
Molecule proved pronounced asymmetry, with the
atom of high radius dominating the wavefunction
localization in both bonding and antibonding states.
The bonding state of the Hetero-Diatomic Molecule
displayed robust wavefunction overlap and
constructive interference, giving rise to a stable
molecular orbital with a lower energy (E =~ —0.77).
On the contrary the antibonding state exhibited
minimal overlap and electron delocalization in the
direction of the larger atom, yielding a higher energy
state (E = —0.24). These results highlight the
decisive impact of atomic dimension and potential
on molecular stability, with atoms of high radius
playing a dominant role in shaping the electronic

structure and energy distribution. This research

demonstrates the flexibility of the LCAO approach
in modeling complex atomic interactions and offers
significant understanding of the electronic properties
of atomic clusters. The findings concur with
theoretical ~ expectations,  accentuating  the
significance of wavefunction localization and
interference in assessing molecular stability and
energy levels, and presenting a schema for future
exploration of nanoscale quantum systems

(Evarestov, 2012), (Kanada-En'yo, 2021) and

(Wang, 2024).
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