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Abstract 
This research endeavors to model and examine the 

quantum mechanical behavior of Homo- and Hetero-

Diatomic Systems utilizing the Linear Combination of 

Atomic Orbitals (LCAO) approach, directing attention 

to wave function localization and energy distribution. 

Simulations were carried out on two-dimensional 

atomic clusters by means of the LCAO Workbench, 

assessing bonding and antibonding states for both 

symmetric (Homo-Diatomic) and asymmetric (Hetero-

Diatomic) Molecules. The systems were distinguished 

by altering atomic radii and potential depths. The 

Homo-Diatomic Molecules displayed symmetric 

bonding and antibonding states by reason of identical 

atomic properties, yielding closely spaced energy levels. 

By comparison, the Hetero-Diatomic Molecule 

demonstrated pronounced asymmetry, with the atom of 

high radius dominating wavefunction localization. 

Bonding states indicated notable wavefunction overlap 

and lower energy, whereas antibonding states revealed 

minimal overlap and higher energy. These findings 

highlight the impact of atomic asymmetry on molecular 

stability and electronic structure. The investigation 

showcases the versatility of the LCAO approach in 

modeling complex atomic interactions, delivering a 

sturdy framework for future nanoscale quantum 

examinations. 
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1. Introduction    

One of the remarkable concept that one may 

encounter while studding the material and solid state 

physics is when two or more atoms are combined 

together. In the event that many atoms are brought 

close, their associated wavefunctions start of overlap 

notably, the energies, and all the qualitative traits of 

the overlapped wavefunctions, experience 

alterations. The Linear Combination of Atomic 

Orbitals (LCAO) approach continues to be an 

essential tool in solid-state physics and quantum 

chemistry, underpinning in the realm of atomic and 

molecular electronic structure computations. 

Through the depiction of electron wavefunction as 

an aggregate of –atomic orbital contributions 

centered on each atom enclosed within a system, 

LCAO clarifies the complex challenge in the 

assessment of the electronic structure of solids 

(Evarestov, 2012). In the domain of solid-state 

physics, the LCAO method demonstrates significant 

worth for investigating the electronic properties of 

materials. It provides researchers equipped to 

interpret and predict atomic interactions within a 

solid, which are essential to the exhibition of 

physical characteristics for instance; magnetism, 

conductivity, and optical properties (Cardona, 

2007). The base line principle of LCAO argues that 

the electron wavefunction in a solid is an aggregate 

of wavefunctions of isolated atoms, taking into 

consideration their interdependent relationships. The 

multifaceted nature of the LCAO approach is 

applicable in numerous systems, such as periodic 

solid crystals, where it exploits the periodic potential 

to break down systematically the electronic structure 

covering a wide array of materials extending from 

pure metals to semiconductors and insulators (Slater, 

1954). The central purpose of this research is to 

conduct simulations of two-dimensional atomic 

clusters utilizing LCAO approach executed via a 

Pascal-based programming environment. This 

simulation project incorporates within Consortium 

for Upper-Level Physics Software (CUPS). The 

LCAO Workbench is an elegant computational 

framework created to assist a dynamic analysis of 

the LCAO approach under the scope of solid-state 

physics. This software supplies a straightforward 

interface via which users can alter and visualize the 

properties of simple 2D atoms, each depicting a state 

of single electron. By modifying the basic 

parameters of these entities, such as coordinates in 

x-y plane, diameter, and quantum numbers, users 

can examine the emergent quantum mechanical 

behavior of the studied system. The LCAO 

Workbench thus operates as vital academic and 

research tool, providing a hands-on approach for 

insight the core concepts controlling electron 

behavior in solid clusters, and its consequences for 

electronic properties and material science (Silsbee, 

1997). 

1.1 Two Dimensional Atomic Clusters 

 A hydrogen-like atoms are quite simple. They are 

characterized by their piecewise constant potential 

that affords them a remarkably straightforward 

wavefunction. The bound state for every atom, 

there are Bessel functions of the first type in the 

interior of the atom (𝑟 < 𝑅), and another 

customized Bessel functions of the second kind, in 
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the exterior (𝑟 > 𝑅)1 (Wang, 2024). The boundary 

conditions that influence the atomic wavefunctions, 

are that the value and derivative of the 

wavefunction must be properly rescaled 

(normalization of the wavefunction). The well-

known time-independent Schrödinger is  

−ℏ2

2𝑚
∇2𝜓(𝑟, 𝜃) + 𝑉(𝑟, 𝜃)𝜓(𝑟, 𝜃) = 𝐸𝜓(𝑟, 𝜃) …(1) 

In this study we are concerned with the ground state 

of atoms with single electron and cylindrically 

symmetric potential (𝑉(𝑟, 𝜃) is actually a function of 

𝑟 only). This condition reduces the Schrödinger 

equation in cylindrical coordinate system to 

−ℏ2

2𝑚

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜓(𝑟)

𝜕𝑟
) + 𝑉(𝑟)𝜓(𝑟) = 𝐸𝜓(𝑟) …(2) 

In fact, Equation (2) is an eigenvalue equation with 

the eigenvalues considering the energies of the 

quantum states, and the associated eigenfuntions 

considering the atomic wavefunctions that we are 

interested in. In this context, the eigenvalue problem 

can be expressed as 

𝐻𝑎𝑡𝑜.𝜓 = 𝐸𝑎𝑡𝑜.𝜓 …(3) 

where the left hand side of the above expression is 

obviously (𝐻𝑎𝑡𝑜.𝜓) the atomic Hamiltonian. In this 

problem, the piecewise constant 𝑉(𝑟) or the 

potential constant takes different values at different 

situations in space. Specifically, conceptualizing the 

atom as a cylindrical model (square well potential 

problem) with its radius and depth being changing 

will make the solution of Equation (2) pretty simple. 

Actually, they are the Bessel function 𝐽𝐵𝑒𝑠𝑠𝑒𝑙(0, 𝑥) 

and the modified function 𝐾𝐵𝑒𝑠𝑠𝑒𝑙(0, 𝑥)2. For the 

purpose of achieving the complete wavefunction for 

                                                           
1 In this context 𝑟 is the distance measured from the center of 

the nucleus and 𝑅 being the diameter of the atom.  
2 𝐽𝐵𝑒𝑠𝑠𝑒𝑙(0, 𝑥) is characterized by Bessel differential equation 

of order zero and is exhibits regularity at the origin. On the 

a specific atom, two boundary conditions are 

required to be met, and the wavefunction necessary 

to be adequately normalized. Conventional 

boundary conditions are employed: 𝜓(𝑟) has to be 

continuous at the discontinuity in the potential; 

𝜕𝜓(𝑟)/𝜕𝑟 needs to maintain continuity at the point 

of discontinuity.  

1.2 Interaction of Atomic Wavefunctions 

 Upon atom assembly to form an atomic cluster, their 

associated wavefunctions are no longer in isolation. 

Alternatively, they interact and influence the 

surrounding atoms and their associated 

wavefunctions as well. This communication 

between atoms is commonly known as ‘cluster 

states’ that represents the new formed ground states 

of the integrated system. Surprisingly, the new 

cluster states are significantly different from the 

isolated states. The interplay between atomic 

wavefunctions is vital in evaluating the electronic 

structure of the formed cluster. The wavefunctions 

overlap, giving rise to two crucial states; bonding 

and antibonding states that govern the stability and 

properties of the solid state matter. This occurrence 

carries special importance in nanoscale systems, at 

points where quantum influences are notable, and 

the electronic properties are substantially influenced 

by these wavefunction interactions (Pal, 2021) and 

(Kanada-En'yo, 2021).  

1.3 LCAO Theory  

As mentioned above, in the event that atoms come 

together, their wavefunctions reflect the effect of the 

other hand, 𝐾𝐵𝑒𝑠𝑠𝑒𝑙(0, 𝑥) exhibits global regularity With the 

exception of a simple pole at the origin. 
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interaction in the formed system. There will be 

cluster states that are consistent with eigenstates of 

the integrated atomic potentials. In particular, 

solving for the exact eigenstates of this system 

demands considerable computational power. Since 

we are endeavoring for a “real time” system that 

allows the researcher to facilitate interactive 

modifications to the shape and position of atoms in 

the cluster, an exact solution lies beyond the 

computational power of standard desktop machines. 

On the other hand, there is a prominent 

approximation that leads to qualitatively correct and 

reasonably close quantitative outcomes. This 

approach is LCAO. The principle is that the 

interaction potential between atomic neighbors 

operates as disturbance, efficiently combining the 

atomic states into an overall molecular or cluster 

state. Consequently, one may use the atomic stats as 

a proficient collection of primitive states for 

establishing the combined states of the cluster of 

atoms (Cramer, 2013). In this simulation, we will 

deal only with atomic ground states for the sake of 

simplicity, let the ground state of the 𝑖th atom be 𝜓𝑖. 

The new configuration cluster state can be expressed 

as 

Ψ =∑𝑐𝑖𝜓𝑖

𝑁

𝑖=1

 …(4) 

in the cluster state Ψ, the 𝑐𝑖’s are the probability 

amplitudes for each individual atomic state. The 𝑐𝑖’s 

values can merely evaluated with the aid of the 

associated eigenvalue problem: 

𝐻𝑇𝑜𝑡𝑎𝑙Ψ = 𝐸Ψ …(5) 

the total Hamiltonian (𝐻𝑇𝑜𝑡𝑎𝑙) takes into 

consideration the interatomic and atomic 

interactions such that; 𝐻𝑇𝑜𝑡𝑎𝑙 = 𝐻𝐴𝑡𝑜𝑚𝑖𝑐 +

𝐻𝐼𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐. The atomic part of the Hamiltonian 

takes into account each individual term in the cluster 

wavefunction. Utilizing Equation (5) we can easily 

end up with the atomic energies. Writing each 

atomic state as |𝑖 >, then the eigenvalue equation 

(Equation (5)) becomes 

(𝐻𝐴𝑡𝑜𝑚𝑖𝑐 + 𝑉𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

=∑𝑢𝑖|𝑖 >= 𝐸∑𝑢𝑖|𝑖 >

𝑁

𝑖=1

𝑁

𝑖=1

 
…(6) 

Projecting out using < 𝑗| produce  

𝐸𝑖𝑢𝑖 +∑𝑢𝑖 < 𝑗|

𝑁

𝑖=1

𝑉𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛|𝑖 >= 𝐸𝑢𝑗  …(7) 

2. Methodology 

 In this study we are interested in utilizing the LCAO 

Workbench computational tool to interactively alter 

the atomic parameters in order to visualize the 

resulting atomic cluster and the produced molecular 

orbitals. The implemented software allows the user to 

treat the atoms as 2D cylindrical square-well 

problem, evaluates the cluster states wavefunction, 

and calculate the elements of the corresponding 

Hamiltonian matrix of a number of configurations. 

This section breaks down the calculation concepts 

and the computation procedure followed. The 

examined atoms in LCAO Workbench are treated as 

cylindrical square wells characterized by a particular 

radius, depth and position. Any atom is defined as 

𝑎𝑡𝑜𝑚𝑂𝑏𝑗𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑟𝑖 , 𝑉𝑜𝑖 , 𝑥𝑖 , 𝑦𝑖) …(8) 

each atom within the cluster will initialize by calling 

the 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 function which give a definite radius 

(𝑟𝑖), depth (𝑉𝑜𝑖), and position (𝑥𝑖 , 𝑦𝑖). The radii 

influence the manner in which the wave functions 

are determined, as they considered the extent over 

which the electron’s probability density exists. On 

the other hand, the potential well depth values 
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control the orbital energy levels of the electron. In 

general, the potential energy of any atom 

(𝑎𝑡𝑜𝑚𝑂𝑏𝑗𝑖) is defined as 

𝑉(𝑟𝑖) = {
−𝑉𝑜
0

1 𝑖𝑓 𝑟𝑖 ≤ 𝑅
1 𝑖𝑓 𝑟𝑖 > 𝑅

} …(9) 

for  𝑅 being the general or reference radius. Finally, 

the positions of the atoms are crucial in evaluating 

each element in the Hamiltonian matrix as well as 

visualizing the atoms. For an electron confined in the 

potential well, the wavefunction 𝜓(𝑟) is simply the 

solution of Equation (2). Bessel function of the first 

kind represent the wavefunction inside the potential 

well. In contrast, the wavefuction outside the 

potential well is defined by Bessel function of the 

second kind. Generally, in the event that 𝑟𝑖 ≤ 𝑅, the 

wave function is represented by:  

𝜓𝑖𝑛(𝑟) = 𝒜𝐽𝑚(𝛼𝑟) …(10) 

where the relationship between the momentum 

quantum number 𝑚, the wave number, and the 

energy 𝐸 is 

𝛼 = √
2𝑚𝑒(𝐸 + 𝑉𝑜)

ℏ2
 …(11) 

Outside the well where the condition 𝑟𝑖 > 𝑅 is 

satisfied, the wavefunction 𝜓𝑜𝑢𝑡(𝑟) is related to the 

modified Bessel function of the second kind 𝐾𝑚  

𝜓𝑜𝑢𝑡(𝑟) = ℬ𝐾𝑚(𝛽𝑟) …(12) 

the constant 𝛽 pertinent to the energy as 

𝛽 = √
2𝑚𝑒(−𝑉𝑜)

ℏ2
 …(13) 

Employing the boundary condition (𝑟 = 𝑅), the two 

unknown coefficients 𝒜 and ℬ can be readily 

ascertained using 

𝑑𝜓𝑖𝑛(𝑟)

𝑑𝑟
|
𝑟=𝑅

=
𝑑𝜓𝑜𝑢𝑡(𝑟)

𝑑𝑟
|
𝑟=𝑅

 …(14) 

 

∫ 2𝜋|𝜓(𝑟)|2𝑟𝑑𝑟 = 1
∞

0

 …(15) 

{
 
 

 
 ∫ 2𝜋𝒜2|𝐽𝑚(𝛼𝑟)|

2𝑟𝑑𝑟
𝑅

0

, 𝑟 < 𝑅

∫ 2𝜋ℬ2|𝐾𝑚(𝛽𝑟)|
2𝑟𝑑𝑟

∞

𝑅

, 𝑟 ≥ 𝑅

 …(16) 

the above normalization condition must be strictly 

satisfied, the utilizing code has a normalizing 

procedure named ‘Normalize’ which altering the  

coefficients 𝒜 and ℬ appropriately. By solving 

Equation (2), the energy eigenvalues can be 

ascertained. In fact, the eigenvalues are derived by 

identifying the roots of Equation (12) that derived 

from the boundary condition  (𝑟 = 𝑅) . This is 

accomplished computationally in the ‘FindEnergy‘ 

procedure using an algorithm for root-finding 

technique. In order to guarantee a non-trivial 

solution of the wavefunction, the determinant of the 

coefficients 𝒜 and ℬ must set to be zero. As a 

consequence, the eigenvalue equation can be solved 

to end up with the required energy value. 

|

𝐽𝑚(𝛼𝑟) −𝐾𝑚(𝛽𝑟)

𝛼
𝑑𝐽𝑚(𝛼𝑟)

𝑑𝑟
|
𝑟=𝑅

−𝛽
𝑑𝐾𝑚(𝛽𝑟)

𝑑𝑟
|
𝑟=𝑅

| = 0 …(17) 

The permissible energy levels are determined by 

solving the above equation for E. To refine the 

energy eigenvalues iteratively, we implement the 

following equation 

𝐸 =
1

𝑑𝑒𝑝𝑡ℎ
(−

ℏ2𝑘2

2𝑚
) …(18) 
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It is vital to mention here that the two Bessel 

functions are crucial and extensively used in 

evaluating the radial part of the Schrödinger 

equation.  For the sake of efficient and precise 

calculation the following recursion equations are 

utilized: 

𝐽𝑚+1(𝑟) =
2𝑚

𝑟
𝐽𝑚(𝑟) − 𝐽𝑚−1(𝑟) 

𝐾𝑚+1(𝑟) =
2𝑚

𝑟
𝑘𝑚(𝑟) + 𝐾𝑚−1(𝑟) 

…(19) 

The code incorporates procedures for estimating 

these functions, taking into account both direct 

calculation and interpolation from precomputed 

values.  

 If an atomic cluster is formed and 𝜓𝑖(𝑟) and 

𝜓𝑗(𝑟) are the wavefunctions of the two atoms, and 

𝑉(𝑟) is the interaction potential then, the matrix 

element in the form of integration is given by 

⟨𝑖|𝑉𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛|𝑗⟩ = ∫ 𝜓𝑖(𝑟)𝑉(𝑟)𝜓𝑗(𝑟)
𝑑𝑟

2𝜋𝑟

∞

0

 …(20) 

In the used code, the value of this integral is 

estimated by Simpson's rule for numerical 

integration (Cune, 2007).  

3. Construction of Hamiltonian Matrix 

 An atomic cluster of 𝑁 atomic quantum states, the 

Hamiltonian matrix (𝐻𝑖𝑗) is commonly a matrix of 

order 𝑁 × 𝑁, depicts the atomic interaction 

(between 𝑖-th and 𝑗-th atomic quantum states) within 

a system of atoms. Within the 𝐻𝑖𝑗 matrix, two main 

types of elements are distinguishable; on the absence 

of interaction between atoms of the system at hands, 

the diagonal elements describes the on-site-energies 

(𝐻𝑖𝑖), while the rest correspond to the interaction 

energies (𝐻𝑖𝑗|𝑖≠𝑗
). The diagonal on-site-energies are 

merely the isolated atom’s energy (𝐻𝑖𝑖 = 𝐸𝑖|𝑖𝑠𝑜) and 

the interaction energies are estimated according to 

the following 

𝐻𝑖𝑗 = ⟨𝑖|𝑉𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛|𝑗⟩ …(21) 

 

𝐻𝑖𝑗 = ∫𝜓𝑖
∗(𝒓) 𝑉𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝒓)𝜓𝑗(𝒓)𝑑(𝒓) …(22) 

in this context 𝒓 refers to the spatial coordinates. In 

the implemented code this calculation is curried out 

within the ‘MatrixElement’ procedure. This 

procedure calculates the above mentioned matrix 

elements by considering the central distance 

between any pair of atoms with respect to the 

associated wavefunctions and the potential depth. 

Typically, for instance, a cluster composed of 𝑁 

atoms the constructed Hamiltonian matrix will be 

 𝐻 = (

𝐻11 𝐻12 ⋯ 𝐻1𝑁
𝐻21 𝐻22 ⋯ 𝐻2𝑁
⋮ ⋮ ⋱ ⋮
𝐻𝑁1 𝐻𝑁2 ⋯ 𝐻𝑁𝑁

) …(23) 



Abdulwahhab Alkuwafi, Journal of Natural and Applied Sciences Pakistan, Vol 7 (1), 2025 pp 2061-2072 

2067 
 

In order to evaluate the values of the energy levels, 

the Hamiltonian matrix should be diagonalized. 

Specifically, the used code executes the 

diagonalization process via two base steps; first with 

the aid of Householder transformation the 

Hamiltonian matrix reduced to a tridiagonal form, 

subsequently applying the QL algorithm3 to estimate 

the eigenvectors and the corresponding eigenvalues 

(Noble, 2017). A defined variable within the 

implemented code named ‘whichState’ allows the 

user to select one of the calculated eigenstates for 

focusing purposes, further investigation and 

subsequent calculation. For the purpose of cluster’s 

wavefunction formulation the used code sums all the 

contributions from the combined atoms in the 

selected eigenstate.  

4. Results and Discussion  

4.1 Quantum Visualization of a Homo-Diatomic 

Molecule  

To examine a system composed of two identical 

atoms, we defined the radius and the distance 

between the atoms prior to running the code. The 

used code allows the user to investigate a range of 

atomic radii varying from 0.5 to 10 measured in 

arbitrary units; on the other hand, the well depth 

domain is ranges from 0.1 to 10.  The two atoms are 

laying on the x-axis and the (𝑥𝑖 , 𝑦𝑖) are defined, the 

radius of each atom and the well depth are 2 and 1 

respectively. Figure (1) depicts the atomic cluster, 

the energy levels for the cluster-stat wavefunction at 

the energy of interest (−0.14), the specific cluster-

state wavefunction, and the wavefunction of the 

                                                           
3 The QL algorithm is a numerical procedure implemented to 

evaluate the eigenvalues and eigenvectors of a symmetric 

selected atom (placed at the origin). Figure (1-a) 

shows a simple system of two identical atoms 

positioned along the horizontal axis with a relatively 

notable distance between them. Energy Levels of the 

Cluster-State wavefunction is illustrated in Figure 

(1-b); this plot exhibits the energy levels 

corresponding to the ‘bonding’ and ‘antibonding’ 

states of the homo-diatomic molecule system as a 

function of interatomic distance. Owing to the 

remarkable distance between atoms, a narrow gap 

between energy levels has been noted (demonstrates 

poor bounding interaction). The particular cluster-

state wavefunction exhibits the spatial distribution of 

electron probability density arising from the 

interaction of atomic wavefunctions (Figure (1-c)). 

The equilibrated form of the wavefunction, 

emphasized by contour lines, indicates constructive 

interference, creating a delocalized bonding state. 

The electron cloud's utmost probability density (∅ ≈

0.1) is confined to the bonding region, highlighting 

the critical overlap of wavefunctions. this behavior 

exemplifies the core mechanism by which atomic 

wavefunctions merge to create molecular orbitals, 

immediately affecting electronic transport properties 

in materials. The visualization reveals key 

perspectives on bonding phenomena in atomic 

clusters, harmonizing with established theoretical 

schemas in quantum mechanics and material science 

(Cramer, 2013). The graphical representation of the 

wavefunction for the atom at the reference point, as 

shown in Figure (1-d), reveals perspectives on the 

particularized character of the electron in the 

tridiagonal matrices. It proficiently iterates by means of 

orthogonal transformations, strongly associated with the QL 

algorithm, to simplify the matrix into diagonal form. 
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potential well. The wavefunction displays peak 

magnitude of approximately  ∅(0) = 0.1 at the 

origin and declines following an exponential 

function with increasing radial distance. This 

behavior is in line with the solution of the 

Schrödinger equation (Equation 2), where the radial 

part of the wavefunction within the well is depicted 

by the Bessel function of the first kind, and outside 

the well with the revised Bessel function of the 

second kind. Beyond the atomic border, the quick 

attenuation of the wavefunction highlights the 

restriction of the electron inside the well-defined 

potential. The exponential decline revealed in the 

diagram indicates the distinguishing behavior of 

bound states, with the confinement principally 

determined by the potential well depth and radius. 

This graphical representation supports the 

theoretical predictions of cylindrical square-well 

potentials and highlights the character of 

wavefunction localization in defining atomic and 

electronic properties within clusters. 

 

Figure 1-a: An atomic cluster consisting of two identical atoms that are relatively far apart from each other. 

Figure 2-b: The energy levels for the cluster-state wavefunction at the energy of interest. 
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Figure 3-c: The specific cluster-state wavefunction.   

 

Figure 4-d: The wavefunction of the selected atom (the atom at the origin).

Figure 5: Quantum mechanical visualization of an atomic-cluster consisting of two identical atoms: energy level 

distributions, probability densities, and wave function aspects. 

4.2 Quantum Visualization of a Hetero-

Diatomic Molecule  

Broadening the analysis from the Homo-Diatomic 

Molecule, this research also explores a Hetero-

Diatomic Molecule with two atoms differing in 

dimensions and potential. The smaller atom at the 

reference point (radius = 2, well depth = 1) and a 

larger adjacent atom (radius = 4, well depth = 1) 

present asymmetry that meaningfully impacts 

bonding and antibonding states (as depicted in 

Figure 2). For the upper energy state (𝐸 ≈ −0.24), 

presented in Figure (2-b), destructive interference 

gives rise to an antibonding configuration with 

diminished wavefunction overlap. This yields 

substantial electron delocalization headed for the 

larger-sized atom. Whereas, the lower energy state 

(𝐸 ≈ −0.77), illustrated in Figure (2-d), reveals a 

bonding configuration characterized by symmetric 

electron density between the atoms (Figure 2-c). In 

comparison to the symmetric Homo-Diatomic 

Molecule, the Hetero-Diatomic System indicates 

substantial differences in bonding behavior, 

underscoring the role of atomic scale and potential 
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on molecular stability. These results correspond with 

previous studies on the influence of asymmetry in 

molding electronic and bonding characteristics (Zhu, 

2011). It is remarkable to mention that at the selected 

energy (𝐸 ≈ −0.24), the contour plot illustrations 

the electron probability density with colored rings 

demonstrating regions of constant |𝜑|2 values. The 

central rings are concerted around the atom of small 

radius, signifying robust electron localization due to 

its smaller radius and enhanced confinement (Figure 

2-a). The outer rings expand in the direction of the 

larger atom, reflecting partial wavefunction 

delocalization affected by the larger atom’s weaker 

potential. The transition in color from warm to cool 

signifies the exponential decay of the wavefunction 

with distance. This asymmetry emphasizes the 

interdependence between atomic size and potential 

in shaping the electron's spatial configuration. On 

the other hand, contour plot aligns with the stable 

bonding state, as demonstrated in the energy 

diagram is shown in Figures 2-c and d. The electron 

probability density is wholly localized around the 

atom of large radius, with inner contours 

demonstrating high-concentration confinement and 

outer contours manifesting elongation towards 

lower-density regions. This denotes considerable 

wavefunction overlap and constructive interference, 

characteristic of a bonding molecular orbital. The 

smaller atom's influence is negligible, stress the 

dominant role of the larger atom in determining the 

wavefunction.

 

Figure 2-a: An atomic cluster consisting of two 

Distinct atoms that are relatively close to each 

other with atom at the origin being smaller than 

the adjacent atom. 

 

Figure 2-b: Energy levels for the upper energy state 

(𝐸 ≈ −0.42). 
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Figure 2-c: The specific cluster-state 

wavefunction of the selected energy line. 

 

Figure 2-d: Energy levels for the upper energy state 

(𝐸 ≈ −0.77). 

Figure: 2 Quantum mechanical visualization of a hetero-diatomic molecule 

5. Conclusion  

This research employed the Linear Combination of 

Atomic Orbitals (LCAO) method to simulate and 

examine the quantum mechanical behavior of 

Homo- and Hetero-Diatomic Molecules. The 

assessment of Homo-Diatomic Systems elucidated 

symmetric bonding and antibonding states as a result 

of equal atomic radii and potentials, causing closely 

spaced energy levels and balanced wavefunction 

distributions. conversely, the Hetero-Diatomic 

Molecule proved pronounced asymmetry, with the 

atom of high radius dominating the wavefunction 

localization in both bonding and antibonding states. 

The bonding state of the Hetero-Diatomic Molecule 

displayed robust wavefunction overlap and 

constructive interference, giving rise to a stable 

molecular orbital with a lower energy (𝐸 ≈ −0.77). 

On the contrary the antibonding state exhibited 

minimal overlap and electron delocalization in the 

direction of the larger atom, yielding a higher energy 

state (𝐸 ≈ −0.24). These results highlight the 

decisive impact of atomic dimension and potential 

on molecular stability, with atoms of high radius 

playing a dominant role in shaping the electronic 

structure and energy distribution. This research 

demonstrates the flexibility of the LCAO approach 

in modeling complex atomic interactions and offers 

significant understanding of the electronic properties 

of atomic clusters. The findings concur with 

theoretical expectations, accentuating the 

significance of wavefunction localization and 

interference in assessing molecular stability and 

energy levels, and presenting a schema for future 

exploration of nanoscale quantum systems 

(Evarestov, 2012), (Kanada-En'yo, 2021) and 

(Wang, 2024). 
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